Skip to main content
Log in

Transcriptome-wide analysis of DEAD-box RNA helicase gene family in an Antarctic psychrophilic alga Chlamydomonas sp. ICE-L

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

DEAD-box RNA helicase family proteins have been identified in almost all living organisms. Some of them play a crucial role in adaptation to environmental changes and stress response, especially in the low-temperature acclimation in different kinds of organisms. Compared with the full swing study in plants and bacteria, the characters and functions of DEAD-box family proteins had not been surveyed in algae. To identify genes critical for freezing acclimation in algae, we screened DEAD-box RNA helicase genes from the transcriptome sequences of a psychrophilic microalga Chlamydomonas sp. ICE-L which was isolated from Antarctic sea ice. Totally 39 DEAD-box RNA helicase genes had been identified. Most of the DEAD-box RNA helicase have 1:1 homologous relationships in Chlamydomonas reinhardtii and Chlamydomonas sp. ICE-L with several exceptions. The homologous proteins in ICE-L to the helicases critical for cold or freezing tolerance in Arabidopsis thaliana had been identified based on phylogenetic comparison studies. The response of these helicase genes is not always identical in the Chlamydomonas sp. ICE-L and Arabidopsis under the same low-temperature treatment. The expression of several DEAD-box RNA helicase genes including CiRH5, CiRH25, CiRH28, and CiRH55 were significantly up-regulated under freezing treatment of ICE-L and their function in freezing acclimation of ICE-L deserved further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Chen ZZ, Xue CH, Zhu S, Zhou F, Xuefeng BL, Liu G, Chen L (2005) GoPipe: streamlined gene ontology annotation for batch anonymous sequences with statistics. Prog Biochem Biophys 32:187–191

    CAS  Google Scholar 

  • Chung E, Cho CW, Yun BH, Choi HK, So HA, Lee SW, Lee JH (2009) Molecular cloning and characterization of the soybean DEAD-box RNA helicase gene induced by low temperature and high salinity stress. Gene 443(1):91–99

    Article  CAS  PubMed  Google Scholar 

  • Fairman-Williams ME, Guenther UP, Jankowsky E (2010) SF1 and SF2 helicases: family matters. Curr Opin Struct Biol 20:313–324

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gong Z, Lee H, Xiong L, Jagendorf A, Stevenson B, Zhu JK (2002) RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc Natl Acad Sci USA 99:11507–11512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gong Z, Dong CH, Lee H et al (2005) A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell 17(1):256–267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gu L, Xu T, Lee K, Lee KH, Kang H (2014) A chloroplast-localized DEAD-box RNA helicase AtRH3 is essential for intron splicing and plays an important role in the growth and stress response in Arabidopsis thaliana. Plant Physiol Biochem 82:309–318

    Article  CAS  PubMed  Google Scholar 

  • Guan QM, Wu JM, Zhang YY, Jiang C, Liu R, Chai C, Zhu J (2013) A DEAD box RNA helicase is critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance in Arabidopsis. Plant Cell 25:342–356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iost I, Bizebard T, Dreyfus M (2013) Functions of DEAD-box proteins in bacteria: current knowledge and pending questions. BBA 1829(8):866–877

    CAS  PubMed  Google Scholar 

  • Jagessar KL, Jain C (2010) Functional and molecular analysis of Escherichia coli strains lacking multiple DEAD-box helicases. RNA 16:1386–1392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jankowsky A, Guenther UP, Jankowsky E (2011) The RNA helicase database. Nucleic Acids Res 39:338–341

    Article  Google Scholar 

  • Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38:355–360

    Article  Google Scholar 

  • Kant P, Kant S, Gordon M, Shaked R, Barak S (2007) STRESS RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2, two DEAD-box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses. Plant Physiol 145(3):814–830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim JS, Kim KA, Oh TR, Park CM, Kang H (2008) Functional characterization of DEAD-box RNA helicases in Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol 49(10):1563–1571

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologistcentric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9(4):299–306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lehnik-Habrink M, Rempeters L, Kovács ÁT, Wrede C, Baierlein C, Krebber H et al (2013) DEAD-box RNA helicases in Bacillus subtilis have multiple functions and act independently from each other. J Bacteriol 195:534–544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Linder P, Fuller-Pace FV (2013) Looking back on the birth of DEAD-box RNA helicases. BBA 1829:750–755

    CAS  PubMed  Google Scholar 

  • Liu C, Huang X, Wang X, Zhang X, Li G (2006) Phylogenetic studies on two strains of Antarctic ice algae based on morphological and molecular characteristics. Phycologia 45:190–198

    Article  Google Scholar 

  • Liu C, Wu G, Huang X, Liu S, Cong B (2012) Validation of housekeeping genes for gene expression studies in an ice alga Chlamydomonas during freezing acclimation. Extremophiles 16:419–425

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C[T]) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Markkula A, Mattila M, Lindström M, Korkeala H (2012) Genes encoding putative DEAD-box RNA helicases in Listeria monocytogenes EGD-e are needed for growth and motility at 3 °C. Environ Microbiol 14:2223–2232

    Article  CAS  PubMed  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mingam A, Toffano-Nioche C, Brunaud V, Boudet N, Kreis M, Lecharny A (2004) DEAD-box RNA helicases in Arabidopsis thaliana: establishing a link between quantitative expression, gene structure and evolution of a family of genes. Plant Biotechnol J 2:401–415

    Article  CAS  PubMed  Google Scholar 

  • Mock T, Junge K (2007) Psychrophilic diatoms: mechanisms for survival in freeze–thaw cycles. Algae and cyanobacteria in extreme environments. Springer, New York, pp 345–364

    Google Scholar 

  • Owttrim GW (2006) RNA helicases and abiotic stress. Nucleic Acids Res 34:3220–3230

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Owttrim GW (2013) RNA helicases: diverse roles in prokaryotic response to abiotic stress. RNA Biol 10:96–110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pandiani F, Brillard J, Bornard I, Michaud C, Chamot S, Broussolle V (2010) Differential involvement of the five RNA helicases in adaptation of Bacillus cereus ATCC 14579 to low growth temperatures. Appl Environ Microbiol 76:6692–6697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM, Nishii I et al (2010) Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329(5988):223–226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Provasoli L (1968) Media and prospects for the cultivation of marine algae. In: Watanabe A, Hattori R (eds) Culture and collections of algae. Proc. US-Japan Conference, Hakone

  • Schade B, Jansen G, Whiteway M, Entian KD, Thomas DY (2004) Cold adaptation in budding yeast. Mol Biol Cell 15:5492–5502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schulz MH, Zerbino DR, Vingron M, Birney E (2012) Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28:1086–1092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomsen MCF, Nielsen M (2012) Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion. Nucleic Acids Res 40(1):281–287

    Article  Google Scholar 

  • Tripurani SK, Nakaminami K, Thompson KB (2011) Spatial and temporal expression of cold-responsive DEAD-box RNA helicases reveals their functional roles during embryogenesis in Arabidopsis thaliana. Plant Mol Biol Rep 29(4):761–768

    Article  CAS  Google Scholar 

  • Tuteja N, Gill SS, Tuteja R (2012) Helicases in Improving Abiotic Stress Tolerance in Crop Plants. In: Tuteja N et al (eds) Improving Crop Resistance to Abiotic Stress, vol 1. Wiley-Blackwell, Wiley-VCH Verlag GmbH and Co., Germany, pp 435–449

    Chapter  Google Scholar 

  • Umate P, Tuteja R, Tuteja N (2010) Genome-wide analysis of helicase gene family from rice and Arabidopsis: a comparison with yeast and human. Plant Mol Biol 73:449–465

    Article  CAS  PubMed  Google Scholar 

  • Valledor L, Furuhashi T, Hanak AM, Weckwerth W (2013) Systemic cold stress adaptation of Chlamydomonas reinhardtii. Mol Cell Proteomics 12(8):2032–2047

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vashisht AA, Tuteja N (2006) Stress responsive DEAD-box helicases: a new pathway to engineer plant stress tolerance. J Photochem Photobio B 84(2):150–160

    Article  CAS  Google Scholar 

  • Wu G, Liu C, Liu S, Cong B, Huang X (2010) High-quality RNA preparation for cDNA library construction of the Antarctic sea–ice alga Chlamydomonas sp. ICE-L. J Appl Phycol 22(6):779–783

    Article  CAS  Google Scholar 

  • Yang Y, Sun Z, Ding C et al (2014) A DEAD-box RNA helicase produces two forms of transcript that differentially respond to cold stress in a cryophyte (Chorispora bungeana). Planta 240(2):369–380

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a Grant of National Natural Science Foundation (41276203) for Chenlin Liu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenlin Liu.

Additional information

Communicated by L. Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 283 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Huang, X. Transcriptome-wide analysis of DEAD-box RNA helicase gene family in an Antarctic psychrophilic alga Chlamydomonas sp. ICE-L. Extremophiles 19, 921–931 (2015). https://doi.org/10.1007/s00792-015-0768-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-015-0768-8

Keywords

Navigation