Skip to main content

Advertisement

Log in

Occurrence and distribution of capB in Antarctic microorganisms and study of its structure and regulation in the Antarctic biodegradative Pseudomonas sp. 30/3

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The analysis of the cold-shock domain (CSD)-encoding genes, capB and cspA, by PCR amplification showed presence of capB in all 18 Antarctic Pseudomonas isolates, but the absence of cspA. Nucleotide sequence analysis of capB ORF from a biodegradative Pseudomonas 30/3 and its regulatory sequences including the promoter and 5′-UTR was determined and compared with the other CSD-encoding genes. Expression analysis using translational gene fusion of the putative capB promoter and its flanking sequence from Pseudomonas sp. 30/3 with lacZ′ exhibited a significant increase in β-galactosidase activity at 15 and 6°C. Unlike the expression of E. coli CspA, Pseudomonas sp. 30/3 showed a slow but steady increase of the CapB expression at 6°C. Subcellular localization of CapB at 6°C showed accumulation in and around the nucleoid whereas at 22 or 30°C, it was identified around the nucleoid as well as in the cytosol. Our study attempts to elucidate the detailed structure of capB from Pseudomonas 30/3 and the role of 5′UTR in the transcriptional regulation along with the possible role of CapB in transcription and translation suited for the cold adaptation of this bacterium in Antarctic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Smith JG, Sideman JG, Struhl K (eds) (1987) Current protocols in molecular biology. John Wiley & Sons, Inc., New York, pp 2.10–2.11

  • Azam TA, Hiraga S, Ishihama A (2000) Two types of localization of the DNA-binding proteins within the Escherichia coli nucleoid. Genes Cells 5:613–626

    Article  CAS  PubMed  Google Scholar 

  • Bae W, Xia B, Inouye M, Severinov K (2000) Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc Natl Acad Sci USA 97:7784–7789

    Article  CAS  PubMed  Google Scholar 

  • Bej AK, Saul D, Aislabie J (2000) Cold tolerant alkane-degrading Rhodococcus species from Antartica. Polar Biol 23:100–105

    Article  Google Scholar 

  • Berger F, Morellet N, Menu F, Potier P (1996) Cold shock and cold acclimation proteins in the psychrotrophic bacterium Arthrobacter globiformis S155. J Bacteriol 178:2999–3007

    CAS  PubMed  Google Scholar 

  • Berger F, Normand P, Potier P (1997) capA, a cspA-like gene that encodes a cold acclimation protein in the psychrotrophic bacterium Arthrobacter globiformis SI55. J Bacteriol 179:5670–5676

    CAS  PubMed  Google Scholar 

  • Brandi A, Pietroni P, Gulazeri CO, Pon CL (1996) Post-transcriptional regulation of CspA expression in Escherichia coli. Mol Microbiol 19:231–240

    Article  CAS  PubMed  Google Scholar 

  • Etchegaray JP, Jones PG, Inouye M (1996) Differential thermoregulation of two highly homologous cold-shock genes, cspA and cspB, of Escherichia coli. Genes Cells 1:171–178

    Article  CAS  PubMed  Google Scholar 

  • Fang L, Jiang W, Bae W, Inouye M (1997) Promoter-independent cold-shock induction of cspA and its derepression at 37°C by mRNA stabilization. Mol Microbiol 23:355–364

    Article  CAS  PubMed  Google Scholar 

  • Fang L, Hou Y, Inouye M (1998) Role of the cold-box region in the 5′ untranslated region of the cspA mRNA in its transient expression at low temperature in Escherichia coli. J Bacteriol 180:90–95

    CAS  PubMed  Google Scholar 

  • Feng W, Tejero R, Zimmerman DE, Inouye M, Montelione GT (1998) Solution NMR structure and backbone dynamics of the major cold shock protein (CspA) from Escherichia coli: evidence for conformational dynamics in the single-stranded RNA-binding site. Biochemistry 37:10881–10896

    Article  CAS  PubMed  Google Scholar 

  • Francis KP, Stewart GS (1997) Detection and speciation of bacteria through PCR using universal major cold-shock protein primer oligomers. J Indust Microbiol Biotechnol 19:286–293

    Article  CAS  Google Scholar 

  • Giangrossi M, Exley RM, Le Hegarat F, Pon CL (2001) Different in vivo localization of the Escherichia coli proteins CspD and CspA. FEMS Microbiol Lett 202(2):171–176

    Article  CAS  PubMed  Google Scholar 

  • Goldenberg D, Azar I, Oppenheim AB (1996) Differential mRNA stability of the cspA gene in the cold-shock response of Escherichia coli. Mol Microbiol 19:241–248

    Article  CAS  PubMed  Google Scholar 

  • Goldenberg D, Azar I, Oppenheim AB, Brandi A, Pon CL, Gualerzi CO (1997) Role of Escherichia coli cspA promoter sequences and adaptation of translational apparatus in the cold shock response. Mol Gen Genet 256:282–290

    Article  CAS  PubMed  Google Scholar 

  • Goldstein J, Pollit NS, Inouye M (1990) Major cold shock protein of Escherichia coli. Proc Natl Acad Sci USA 87:283–287

    Article  CAS  PubMed  Google Scholar 

  • Graumann P, Marahiel MA (1996) Some like it cold: response of microorganisms to cold shock. Arch Microbiol 166:293–300

    Article  CAS  PubMed  Google Scholar 

  • Graumann PL, Marahiel MA (1998) A superfamily of proteins that contain the cold-shock domain. Trends Biochem Sci 23:286–290

    Article  CAS  PubMed  Google Scholar 

  • Gumley AW, Iniss WE (1996) Cold shock proteins and cold acclimation proteins in the psychrotrophic bacterium Pseudomonas putida Q5 and its transconjugants. Can J Microbiol 42:798–803

    Article  CAS  PubMed  Google Scholar 

  • Harry EJ, Pogliano K, Losick R (1995) Use of immunofluorescence to visualize cell-specific gene expression during sporulation in Bacillus subtilis. J Bacteriol 177(12):3386–3389

    CAS  PubMed  Google Scholar 

  • Hebraud M, Potier P (1999) Cold shock response and low temperature adaptation in psychrotrophic bacteria. J Mol Microbiol Biotechnol 1:211–219

    CAS  PubMed  Google Scholar 

  • Hebraud M, Garry P, Labadie J (1993) Ubiquity of low molecular mass cold-shock proteins. Abstracts of the fourth international symposium on pseudomonas, p 59

  • Hebraud M, Dubois E, Potier P, Labadie J (1994) Effect of growth temperatures on the protein levels in a psychrotrophic bacterium, Pseudomonas fragi. J Bacteriol 176:4017–4024

    CAS  PubMed  Google Scholar 

  • Jiang W, Jones P, Inouye M (1993) Chloramphenicol induced the transcription of the major cold-shock gene of Escherichia coli, cspA. J Bacteriol 175:5824–5828

    CAS  PubMed  Google Scholar 

  • Jiang W, Fang L, Inouye M (1996) The role of the 5′-end untranslated region of the mRNA for CspA, the major cold-shock protein of Escherichia coli, in cold-shock adaptation. J Bacteriol 178(16):4919–4925

    CAS  PubMed  Google Scholar 

  • Lewis PJ, Thaker SD, Errington J (2000) Compartmentalization of transcription and translation in Bacillus subtilis. EMBO J 19:710–718

    Article  CAS  PubMed  Google Scholar 

  • Lim J, Thomas T, Cavicchioli R (2000) Low temperature regulated DEAD-box RNA helicase from the Antarctic archaeon, Methanococcoides burtonii. J Mol Biol 297:553–567

    Article  CAS  PubMed  Google Scholar 

  • Michel V, Lehoux I, Depret G, Anglade P, Labadie J, Hebraud M (1997) The cold shock response of the psychrotrophic bacterium Pseudomonas fragi involves four low-molecular-mass nucleic acid-binding proteins. J Bacteriol 179:7331–7342

    CAS  PubMed  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Laboratory, Cold Spring Harbor, NY, pp 352–355

    Google Scholar 

  • Mitta M, Fang L, Inouye M (1997) Deletion analysis of cspA of Escherichia coli: requirement of the AT-rich UP element for cspA transcription and the downstream box in the coding region for its cold shock induction. Mol Microbiol 26:321–335

    Article  CAS  PubMed  Google Scholar 

  • Newkirk K, Feng W, Jiang W, Tejero R, Emerson SD, Inouye M, Montelione GT (1994) Solution NMR structure of the major cold shock protein (CspA) from Escherichia coli: identification of a binding epitope for DNA. Proc Natl Acad Sci USA 91:5114–5118

    Article  CAS  PubMed  Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  CAS  PubMed  Google Scholar 

  • Panicker G, Aislabie J, Saul D, Bej A (2002) Cold tolerance of Pseudomonas sp. 30/3 isolated from oil-contaminated soil, Antarctica. Pol Biol 225:5–11

    Article  Google Scholar 

  • Phadtare S, Alsina J, Inouye M (1999) Cold-shock response and cold-shock proteins. Curr Opin Microbiol 2(2):175–180

    Article  CAS  PubMed  Google Scholar 

  • Pikuta EV, Hoover RB (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33:183–209

    Article  CAS  PubMed  Google Scholar 

  • Roberts ME, Inniss WE (1992) The synthesis of cold shock proteins and cold acclimation proteins in the psychrophilic bacterium Aquaspirillum articum. Curr Microbiol 25:275–278

    Article  CAS  Google Scholar 

  • Schindelin H, Marahiel MA, Heinemann U (1993) Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold-shock protein. Nature 364:164–168

    Article  CAS  PubMed  Google Scholar 

  • Schindelin H, Jiang W, Inouye M, Heinemann U (1994) Crystal structure of CspA, the major cold shock protein of Escherichia coli. Proc Natl Acad Sci USA 91:5119–5123

    Article  CAS  PubMed  Google Scholar 

  • Schindler T, Graumann PL, Perl D, Ma S, Schmid FX, Marahiel MA (1999) The family of cold shock proteins of Bacillus subtilis. Stability and dynamics in vitro and in vivo. J Biol Chem 274:3407–3413

    Article  CAS  PubMed  Google Scholar 

  • Somerville J (1999) Activities of cold-shock domain proteins in translation control. Bioessays 21:319–325

    Article  Google Scholar 

  • Tanabe H, Goldstein J, Yang M, Inouye M (1992) Identification of the promoter region of the Escherichia coli major cold shock gene, cspA. J Bacteriol 174:3867–3873

    CAS  PubMed  Google Scholar 

  • Thieringer HA, Jones PG, Inouye M (1998) Cold shock adaptation. BioEssays 20:49–57

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Yamanka K, Inouye M (1999) CspI, the ninth member of the CspA family of Escherichia coli, is induced upon cold shock. J Bacteriol 181:1603–1609

    CAS  PubMed  Google Scholar 

  • Weber MHW, Volkov AV, Fricke I, Marahiel MA, Graumann PL (2001) Localization of cold shock proteins to cytosolic spaces surrounding nucleoids in Bacillus subtilis depends on active transcription. J Bacteriol 183(21):6435–6443

    Article  CAS  PubMed  Google Scholar 

  • Whyte LG, Inniss WE (1992) Cold shock proteins and cold acclimation proteins in a psychrotrophic bacterium. Can J Microbiol 38:1281–1285

    Article  CAS  Google Scholar 

  • Wolffe AP (1994) Structural and functional properties of the evolutionarily ancient Y-box family of nucleic acid binding proteins. Bioessays 16:245–251

    Article  CAS  PubMed  Google Scholar 

  • Wolffe AP, Tafuri S, Ranjan M, Familari M (1992) The Y-box factors: a family of nucleic acid binding proteins conserved from Escherichia coli to man. New Biol 4:290–298

    CAS  PubMed  Google Scholar 

  • Wouters JA, Rombouts FM, Kuipers OP, de Vos WM, Abee T (2000) The role of cold-shock proteins in low-temperature adaptation of food-related bacteria. Syst Appl Microbiol 23:165–173

    CAS  PubMed  Google Scholar 

  • Yamanka K, Fang L, Inouye M (1998) The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Mol Microbiol 27:247–255

    Article  Google Scholar 

  • Yamanka K, Mitta M, Inouye M (1999) Mutation analysis of the 5′ untranslated region of the cold shock cspA mRNA of Escherichia coli. J Bacteriol 181:6284–6291

    Google Scholar 

Download references

Acknowledgments

This study was supported in part the UAB Faculty Development award and the Department of Biology, and the Foundation of Research, Science and Technology, New Zealand (C09X0018). The logistic support was provided by Antarctica New Zealand; 2008 Tawani International Scientific Expedition (Tawani Foundation, Chicago, IL); and Antarctic Maitri (NCAOR, India) and Novolazarevskaya (Russia) stations. We thank Col (Ret) James Pritzker for supporting the Tawani Expedition; Rasik Ravindra (Director, NCAOR, India), Cdr. Arun Chaturvedi, Cdr. Pradip Malhotra and Ashit Swain for field support. We thank Edward Phillips at UAB High Resolution Imaging Shared Facility for the fluorescent microscopy study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim K. Bej.

Additional information

Communicated by A. Oren.

G. Panicker and N. Mojib contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panicker, G., Mojib, N., Nakatsuji, T. et al. Occurrence and distribution of capB in Antarctic microorganisms and study of its structure and regulation in the Antarctic biodegradative Pseudomonas sp. 30/3. Extremophiles 14, 171–183 (2010). https://doi.org/10.1007/s00792-009-0296-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-009-0296-5

Keywords

Navigation