Skip to main content
Log in

CspA encodes a major cold shock protein in Himalayan psychrotolerant Pseudomonas strains

  • Original Articles
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

The major cold-shock protein (CspA) encoding gene cspA were detected in three Himalayan psychrotrophic Pseudomonad strains, by PCR amplification. Partial sequencing of three Pseudomonas strains cspA gene and BLAST search confirmed the high similarity with putative bacterial cspA gene and bacterial CspA protein. Bioinformatics analysis of these partial CspA amino acid sequences showed presence of putative conserved region for DNA/RNA-binding motifs RNP-1 and RNP-2. Protein homologies of all three bacterial CspA proteins belong to S1 like protein (Ribosomal protein S1-like RNA-binding domain). Presence of cspA gene and its high similarity with Bacillus cereus group demonstrating uniqueness of cspA gene in these Pseudomonas strains and suggesting strong evolutionary relationship between these two groups to survive in cold environments. Probable CspA protein expression levels were checked after cold shock (28°C to 4°C) and cold acclimation (4°C and 15°C) experiment. SDS-PAGE analysis revealed a small protein of approximate size of 7.5 kDa was expressed after cold shock (28°C to 4°C) and continuously over-expressed with the incubation time at cold temperature (4°C). Therefore it was predicted this protein would be product of cspA gene and suggesting this protein aids survival in Himalayan environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bae, W., Phadtare, S., Severinov, K., Inouye, M. 1999. Characterization of Escherichia coli cspE, whose product negatively regulates transcription of cspA, the gene for the major cold shock protein. Mol Microbiol 3, 1429.

    Article  Google Scholar 

  2. Bisht, S.C., Mishra, P.K., Joshi, J.K. 2013. Genetic and functional diversity among root-associated psychrotrophic Pseudomonad’s isolated from the Himalayan plants. Arch. Microbiol. DOI 10.1007/s00203-013-0908-4.

    Google Scholar 

  3. Balhesteros, H., Mazzon, R.R., da Silva, C.A., Lang, E.A., Marques, M.V. 2010. CspC and CspD are essential for Caulobacter crescentus stationary phase survival. Arch Microbiol 192, 747–758.

    Article  CAS  PubMed  Google Scholar 

  4. Berger, F., Morellet, N., Menu, F., Potier, P. 1996. Cold shock and cold acclimation proteins in the psychrotrophic bacterium Arthrobacter globiformis SI55. J Bacteriol 178, 2999–3007.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Berger, F., Normand, P., Potier, P. 1997. capA, a cspA-like gene that encodes a cold acclimation protein in the psychrotrophic bacterium Arthrobacter globiformis SI55. J Bacteriol 179, 5670–5676.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Brandi, A., Pon, C.L. 2012. Expression of Escherichia coli cspA during early exponential growth at 37°C. Gene 492, 382–388.

    Article  CAS  PubMed  Google Scholar 

  7. Francis, K.P., Mayer, R., Stewart, G.S.A.B., Stetten, F.V., Scherer, S. 1998. Discrimination of Psychrotrophic and Mesophilic Strains of the Bacillus cereus Group by PCR Targeting of Major Cold Shock Protein Genes. Appl Envion Microbiol 64, 3525–3529.

    CAS  Google Scholar 

  8. Freischmidt, A., Hiltl, J., Kalbitzer, H.R., Horn-Katting, G. 2013. Enhanced in vitro translation at reduced temperatures using a cold-shock RNA motif. Biotechnol Lett 35, 389–395.

    Article  CAS  PubMed  Google Scholar 

  9. Garnier, M., Matamoros, S., Chevret, D., Pilet, M.F., Leroi, F., Tresse, O. 2010. Adaptation to cold and proteomic responses of the psychrotrophic biopreservative Lactococcus piscium strain CNCM I-4031. Appl Envion Microbiol 76, 8011–8018.

    Article  CAS  Google Scholar 

  10. Goldstein, J., Pollitt, N.S., Inouye, M. 1990. Major cold shock protein of Escherichia coli. Proc. Natl. Acad. Sci. 87, 283–287.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Goldstein, J., Pollitt, N.S., Inouye, M. 1990. Major cold shock protein of Escherichia coli. Proc Natl Acad Sci 87, 283–287.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Graumann, P., Marahiel, M.A. 1998. A superfamily of proteins containing the cold shock domain. Trends Biochem Sci 23, 286–290.

    Article  CAS  PubMed  Google Scholar 

  13. Herbraud, M., Potier, P. 1999. Cold shock response and low temperature adaptation in psycrophilic bacteria. J Mol Microbiol Biotechnol 1, 211–219.

    Google Scholar 

  14. Jiang, W., Hou, Y., Inouye, M. 1997. The major cold shock proteins of E. coli, is an RNA chaperone. J Biol Chem 272, 196–202.

    Article  CAS  PubMed  Google Scholar 

  15. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.

    Article  CAS  PubMed  Google Scholar 

  16. Kumar, S., Tamura, K., Nei, M. 2004. MEGA3: Integrated software for Molecular Evolutionary Genetic Analysis and sequence alignment. Brief Bioinform 5, 150–163.

    Article  CAS  PubMed  Google Scholar 

  17. Mazzon, R.R., Lang, E.A., Silva, C.A., Marques, M.V. 2012. Cold shock genes cspA and cspB from Caulobacter crescentus are posttranscriptionally regulated and important for cold adaptation. J Bacteriol 194, 6507–6517.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Michel, V., Lehoux, I., Depret, G., Anglade, P., Labadie, J., Hebraud, M. 1997. The cold shock response of the psychrotrophic bacterium Pseudomonas fragi involves four low-molecular-mass nucleic acidbinding proteins. J Bacteriol 179, 7331–7342.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Mishra, P.K., Bisht, S.C., Ruwari, P., Selvakumar, G., Joshi, G.K. et al. 2011. Alleviation of cold stress effects in wheat (Triticum aestivum L.) seedlings by application of psychrotolerant Pseudomonads from NW Himalayas. Arch Microbiol 193, 497–413.

    Article  CAS  PubMed  Google Scholar 

  20. Panicker, G., Mojib, N., Nakatsuji, T., Aislabie, J., Bej, A.K. 2010. Occurrence and distribution of capB in Antarctic microorganisms and study of its structure and regulation in the Antarctic biodegradative Pseudomonas sp. 30/3. Extremophiles 14, 171–183.

    Article  CAS  PubMed  Google Scholar 

  21. Phadtare, S., Inouye, M. 2004. Genome-wide transcriptional analysis of the cold shock response in wildtype and cold-sensitive, quadruple-csp-deletion strains of Escherichia coli. J Bacteriol 186, 7007–7014.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Saitou, N., Nei, M. 1987. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.

    CAS  PubMed  Google Scholar 

  23. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G. 1997. The CLUSTAL-X windows interface: flexible strategies for multiple sequences alignment aided by quality analysis tools. Nucleic Acids Res 25, 48760–4882.

    Article  Google Scholar 

  24. Wang, Q.F., Miao, J.L., Hou, Y.H., Ding, Y., You, L.G. 2006. Expression of CspA and GST by an Antarctic psychrophilic bacterium Colwellia sp. NJ341 at near-freezing temperature. World J Microbiol Biotechnol 22, 311–316.

    Article  Google Scholar 

  25. Schröder, K., Graumann, P., Schnuchel, A., Holak, T.A., Marahiel, M.A. 1995. Mutational analysis of the putative nucleic acid-binding surface of the cold-shock domain, CspB, revealed an essential role of aromatic and basic residues in binding of single-stranded DNA containing the Y-box motif. Mol Microbiol 16, 699–708.

    Article  PubMed  Google Scholar 

  26. Bandziulis, R.J., Swanson, M.S., Dreyfuss, G. 1989. RNA-binding proteins as developmental regulators. Genes Dev 3, 431–437.

    Article  CAS  PubMed  Google Scholar 

  27. Xia, B., Ke, H., Inouye, M. 2001. Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli. Mol Microbiol 40, 179–188.

    Article  CAS  PubMed  Google Scholar 

  28. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  29. Marchler-Bauer, A., Zheng, C., Chitsaz, F., Derbyshire, M.K., Geer, L.Y., Geer, R.C., Gonzales, N.R., Gwadz, M., Hurwitz, D.I., Lanczycki, C.J., Lu, F., Lu, S., Marchler, G.H., Song, J.S., Thanki, N., Yamashita, R.A., Zhang, D., Bryant, S.H. 2011. CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acid Res 39, 225–229.

    Article  Google Scholar 

  30. Soufiane, B., Côté, J.C. 2013. Bacillus weihenstephanensis characteristics are present in Bacillus cereus and Bacillus mycoides strains. FEMS Microbiol Lett doi: 10.1111/1574-6968.12106.

    Google Scholar 

  31. Phadtare, S. 2011. Unwinding activity of cold shock proteins and RNA metabolism. RNA Biology 8:3, 394–397.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Jung, Y.H., Yi, J.Y., Jung, H.J., Lee, Y.K., Lee, H.K., Naicker, M.C., Uh, J.H., Jo, I.S., Jung, E.J., Im, H. 2010. Overexpression of cold shock protein A of Psychromonas arctica KOPRI 22215 confers coldresistance. Protein J. 29, 136–142.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shekhar Chandra Bisht.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisht, S.C., Joshi, G.K. & Mishra, P.K. CspA encodes a major cold shock protein in Himalayan psychrotolerant Pseudomonas strains. Interdiscip Sci Comput Life Sci 6, 140–148 (2014). https://doi.org/10.1007/s12539-013-0015-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-013-0015-x

Key words

Navigation