Skip to main content
Log in

Diversity of microbial eukaryotes in sediment at a deep-sea methane cold seep: surveys of ribosomal DNA libraries from raw sediment samples and two enrichment cultures

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Recent culture-independent surveys of eukaryotic small-subunit ribosomal DNA (SSU rDNA) from many environments have unveiled unexpectedly high diversity of microbial eukaryotes (microeukaryotes) at various taxonomic levels. However, such surveys were most probably biased by various technical difficulties, resulting in underestimation of microeukaryotic diversity. In the present study on oxygen-depleted sediment from a deep-sea methane cold seep of Sagami Bay, Japan, we surveyed the diversity of eukaryotic rDNA in raw sediment samples and in two enrichment cultures. More than half of all clones recovered from the raw sediment samples were of the basidiomycetous fungus Cryptococcus curvatus. Among other clones, phylotypes of eukaryotic parasites, such as Apicomplexa, Ichthyosporea, and Phytomyxea, were identified. On the other hand, we observed a marked difference in phylotype composition in the enrichment samples. Several phylotypes belonging to heterotrophic stramenopiles were frequently found in one enrichment culture, while a phylotype of Excavata previously detected at a deep-sea hydrothermal vent dominated the other. We successfully established a clonal culture of this excavate flagellate. Since these phylotypes were not identified in the raw sediment samples, the approach incorporating a cultivation step successfully found at least a fraction of the “hidden” microeukaryotic diversity in the environment examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amaral Zettler LA, Gómez F, Zettler E, Keenan BG, Amils R, Sogin ML (2002) Eukaryotic diversity in Spain’s River of Fire. Nature 417:137

    Article  PubMed  CAS  Google Scholar 

  • Atkins MS, Anderson OR, Wirsen CO (1998) Effect of hydrostatic pressure on the growth rates and encystment of flagellated protozoa isolated from a deep-sea hydrothermal vent and a deep shelf region. Mar Ecol Prog Ser 171:85–95

    Google Scholar 

  • Atkins MS, Teske AP, Anderson OR (2000) A survey of flagellate diversity at four deep-sea hydrothermal vents in the Eastern Pacific Ocean using structural and molecular approaches. J Eukaryot Microbiol 47:400–411

    Article  PubMed  CAS  Google Scholar 

  • Behnke A, Bunge J, Barger K, Breiner HW, Alla V, Stoeck T (2006) Microeukaryote community patterns along an O2/H2S gradient in a supersulfidic anoxic fjord (Framvaren, Norway). Appl Environ Microbiol 72:3626–3636

    Article  PubMed  CAS  Google Scholar 

  • Bernard C, Simpson AGB, Patterson DJ (2000) Some free-living flagellates (protista) from anoxic habitats. Ophelia 52:113–142

    Google Scholar 

  • Berney C, Fahrni J, Pawlowski J (2004) How many novel eukaryotic ‘kingdoms’? Pitfalls and limitations of environmental DNA surveys. BMC Biol 2:13

    Article  PubMed  Google Scholar 

  • Countway PD, Gast RJ, Savai P, Caron DA (2005) Protistan diversity estimates based on 18S rDNA from seawater incubations in the Western North Atlantic. J Eukaryot Microbiol 52:95–106

    Article  PubMed  CAS  Google Scholar 

  • Dawson SC, Pace NR (2002) Novel kingdom-level eukaryotic diversity in anoxic environments. Proc Natl Acad Sci USA 99:8324–8329

    Article  PubMed  CAS  Google Scholar 

  • Díez B, Pedrós-Alió C, Massana R (2001) Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl Environ Microbiol 67:2932–2941

    Article  PubMed  Google Scholar 

  • Drebes G, Kühn SF, Gmelch A, Schnepf E (1996) Cryothecomonas aestivalis sp. nov., a colourless nanoflagellate feeding on the marine centric diatom Guinardia delicatula (Cleve) Hasle. Helgol Wiss Meeresunters 50:497–515

    Article  Google Scholar 

  • Dromer F, Moulignier A, Dupont B, Gueho E, Baudrimont M, Improvisi L, Provost F, Gonzalez-Canali G (1995) Myeloradiculitis due to Cryptococcus curvatus in AIDS. AIDS 9:395–396

    PubMed  CAS  Google Scholar 

  • Dumitru R, Hornby JM, Nickerson KW (2004) Defined anaerobic growth medium for studying Candida albicans basic biology and resistance to eight antifungal drugs. Antimicrob Agents Chemother 48:2350–2354

    Article  PubMed  CAS  Google Scholar 

  • Edgcomb VP, Kysela DT, Teske A, de Vera Gomez A, Sogin ML (2002) Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc Natl Acad Sci USA 99:7658–7662

    Article  PubMed  CAS  Google Scholar 

  • Ekebom J, Patterson DJ, Vørs N (1995/96) Heterotrophic flagellates from coral reef sediments (Great Barrier Reef, Australia). Arch Protistenkd 146:251–272

    Google Scholar 

  • Ekelund F, Patterson DJ (1997) Some heterotrophic flagellates from a cultivated garden soil in Australia. Arch Protistenkd 148:461–478

    Google Scholar 

  • Fenchel T, Finlay BJ (1995) Ecology and evolution in anoxic worlds. Oxford University Press, Oxford

    Google Scholar 

  • Guindon S, Gascuel O (2003) Simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hoppenrath M, Leander BS (2006) Ebriid phylogeny and the expansion of the Cercozoa. Protist 157:279–290

    Article  PubMed  CAS  Google Scholar 

  • Hugenholtzt P, Huber T (2003) Chimeric 16S rDNA sequences of diverse origin are accumulating in the public databases. Int J Syst Evol Microbiol 53:289–293

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto E, Kyo M (1993) Development of microbiological compact mud sampler (in Japanese with English abstract). JAMSTEC Res 30:1–16

    Google Scholar 

  • Kim YW, Yasuda M, Yamagishi A, Oshima T, Ohta S (1995) Characterization of the endosymbiont of a deep-sea bivalve, Calyptogena soyoae. Appl Environ Microbiol 61:823–827

    PubMed  CAS  Google Scholar 

  • Kühn S, Drebes G, Schnepf E (1996) Five species of the nanoflagellate Pirsonia in the German Bight, North Sea, feeding on planktic diatoms. Helgol Wiss Meeresunters 50:205–222

    Article  Google Scholar 

  • Kühn SF, Medlin LK, Eller G (2004) Phylogenetic position of the parasitoid nanoflagellate Pirsonia inferred from nuclear-encoded small subunit ribosomal DNA and a description of Pseudopirsonia n. gen. and Pseudopirsonia mucosa (Drebes) comb. nov. Protist 155:143–156

    Article  PubMed  Google Scholar 

  • Leander BS, Harper JT, Keeling PJ (2003) Molecular phylogeny and surface morphology of marine aseptate gregarines (Apicomplexa): Selenidium spp. and Lecudina spp. J Parasitol 89:1191–1205

    Article  PubMed  CAS  Google Scholar 

  • Leander BS, Lloyd SAJ, Marshall W, Landers SC (2006) Phylogeny of marine gregarines (Apicomplexa)—Pterospora, Lithocystis and Lankesteria—and the origin(s) of coelomic parasitism. Protist 157:45–60

    Article  PubMed  CAS  Google Scholar 

  • López-García P, Rodriguez-Valera F, Pedros-Alio C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607

    Article  PubMed  Google Scholar 

  • López-García P, Philippe H, Gail F, Moreira D (2003) Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc Natl Acad Sci USA 100:697–702

    Article  PubMed  CAS  Google Scholar 

  • Maidak BL, Cole JR, Lilburn TG, Parker CT Jr, Saxman PR, Farris RJ, Garrity GM, Olsen GJ, Schmidt TM, Tiedje JM (2001) The RDP-II (Ribosomal Database Project). Nucl Acids Res 29:173–174

    Article  PubMed  CAS  Google Scholar 

  • Massana R, Balagué V, Guillou L, Pedrós- Alió C (2004a) Picoeukaryotic diversity in an oligotrophic coastal site studied by molecular and culturing approaches. FEMS Microbiol Ecol 50:231–243

    Article  CAS  Google Scholar 

  • Massana R, Castresana J, Balagué V, Guillou L, Romari K, Groisillier A, Valentin K, Pedrós-Alió C (2004b) Phylogenetic and ecological analysis of novel marine stramenopiles. Appl Environ Microbiol 70:3528–3534

    Article  PubMed  CAS  Google Scholar 

  • Mendoza L, Taylor JW, Ajello L (2002) The class mesomycetozoea: a heterogeneous group of microorganisms at the animal–fungal boundary. Annu Rev Microbiol 56:315–344

    Article  PubMed  CAS  Google Scholar 

  • Moon-van der Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610

    Article  CAS  Google Scholar 

  • Moreira D, López-García P (2003) Are hydrothermal vents oases for parasitic protists? Trends Parasitol 19:556–558

    Article  PubMed  CAS  Google Scholar 

  • Naqvi SWA (1994) Denitrification processes in the Arabian Sea. Proc Indian Acad Sci Earth Planet Sci 103:279–300

    CAS  Google Scholar 

  • Pawlowski J, Bolivar I, Fahrni JF, Cavalier-Smith T, Gouy M (1996) Early origin of foraminifera suggested by SSU rRNA gene sequences. Mol Biol Evol 13:445–450

    PubMed  CAS  Google Scholar 

  • Perkins FO, Barta JR, Clopton RE, Peirce MA, Upton SJ (2002) Phylum Apicomplexa. In: Lee JJ, Leedale GF, Bradbury P (eds) The illustrated guide to the protozoa. Allen Press, Lawrence, pp 190–304

    Google Scholar 

  • Raghukumar S (2002) Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). Eur J Protistol 38:127–145

    Article  Google Scholar 

  • Rodríguez F, Oliver JL, Marin A, Medina JR (1990) The general stochastic model of nucleotide substitution. J Theoret Biol 142:485–501

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Schnepf E, Drebes G, Elbrächter M (1990) Pirsonia guinardiae, gen. et spec. nov.: a parasitic flagellate on the marine diatom Guinardia flaccida with an unusual mode of food uptake. Helgol Wiss Meeresunters 44:275–293

    Article  Google Scholar 

  • Schnepf E, Kühn SF, Bulman S (2000) Phagomyxa bellerocheae sp. nov. and Phagomyxa odontellae sp. nov., Plasmodiophoromycetes feeding on marine diatoms. Helgoland Mar Res 54:237–241

    Article  Google Scholar 

  • Schweikert M, Schnepf E (1997) Light and electron microspical observations on Pirsonia punctigerae spec. nov., a nanoflagellate feeding on the marine centric diatom Thalassiosira punctigera. Eur J Protistol 33:168–177

    Google Scholar 

  • Simpson AGB (2003) Cytoskeletal organization, phylogenetic affinities and systematics in the contentious taxon Excavata (Eukaryota). Int J Syst Evol Microbiol 53:1759–1777

    Article  PubMed  Google Scholar 

  • Simpson AGB, Patterson DJ (1999) The ultrastructure of Carpediemonas membranifera (Eukaryota) with reference to the “Excavate hypothesis”. Eur J Protistol 35:353–370

    Google Scholar 

  • Stoeck T, Epstein S (2003) Novel eukaryotic lineages inferred from small-subunit rRNA analyses of oxygen-depleted marine environments. Appl Environ Microbiol 69:2657–2663

    Article  PubMed  CAS  Google Scholar 

  • Stoeck T, Taylor GT, Epstein SS (2003) Novel eukaryotes from the permanently anoxic Cariaco Basin (Caribbean Sea). Appl Environ Microbiol 69:5656–5663

    Article  PubMed  CAS  Google Scholar 

  • Stoeck T, Hayward B, Taylor GT, Varela R, Epstein SS (2006) A multiple PCR-primer approach to access the microeukaryotic diversity in environmental samples. Protist 157:31–43

    Article  PubMed  CAS  Google Scholar 

  • Takishita K, Miyake H, Kawato M, Maruyama T (2005) Genetic diversity of microbial eukaryotes in anoxic sediment around fumaroles on a submarine caldera floor based on the small-subunit rDNA phylogeny. Extremophiles 9:185–196

    Article  PubMed  CAS  Google Scholar 

  • Takishita K, Tsuchiya M, Reimer JD, Maruyama T (2006) Molecular evidence demonstrating the basidiomycetous fungus Cryptococcus curvatus is the dominant microbial eukaryote in sediment at the Kuroshima Knoll methane seep. Extremophiles 10:165–169

    Article  PubMed  CAS  Google Scholar 

  • Takishita K, Tsuchiya M, Kawato M, Oguri K, Kitazato H, Maruyama T (2007) Genetic diversity of microbial eukaryotes in anoxic sediment of the saline meromictic lake Namako-ike (Japan): On the detection of anaerobic or anoxic-tolerant lineages of eukaryotes. Protist 158:51–64

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Thomsen HA, Buck KR, Bolt PA, Garrison DL (1991) Fine structure and biology of Cryothecomonas gen. nov. (Protista incertae sedis) from the ice biota. Can J Zool 69:1048–1070

    Article  Google Scholar 

  • Tillmann U, Hesse KJ, Tillmann A (1999) Large-scale parasitic infection of diatoms in the Northfrisian Wadden Sea. J Sea Res 42:255–261

    Article  Google Scholar 

  • Tong SM, Nygaard K, Bernard C, Vørs N, Patterson DJ (1998) Heterotrophic flagellates from the water column in Port Jackson, Sydney, Australia. Eur J Protistol 34:162–194

    Google Scholar 

  • Zuendorf A, Bunge J, Behnke A, Barger K, Stoeck T (2006) Diversity estimates of microeukaryotes below the chemocline of the anoxic Mariager Fjord, Denmark. FEMS Microbiol Ecol 58:476–491

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. J.D. Reimer (Biological Institute on Kuroshio) for critical reading of the manuscript; Drs. M. Tsuchiya and H. Nomaki (JAMSTEC) for providing unpublished environmental data on the sediments investigated here; Dr. I. Inouye (University of Tsukuba) for valuable advice; and the captain and crew of the R/V Natsushima and the commander, pilots, and operation team of the ROV Hyper-Dolphin for dedicated efforts. This work was supported in part by grants from the Japan Society for the Promotion of Science (No. 17770077 to K. Takishita, No. 18570214 to Y. Inagaki and No. 17370029 to I. Inouye).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyotaka Takishita.

Additional information

Communicated by K. Horikoshi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

792_2007_68_MOESM1_ESM.doc

792_2007_68_MOESM2_ESM.gif

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takishita, K., Yubuki, N., Kakizoe, N. et al. Diversity of microbial eukaryotes in sediment at a deep-sea methane cold seep: surveys of ribosomal DNA libraries from raw sediment samples and two enrichment cultures. Extremophiles 11, 563–576 (2007). https://doi.org/10.1007/s00792-007-0068-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-007-0068-z

Keywords

Navigation