Skip to main content

Advertisement

Log in

Genetic diversity of microbial eukaryotes in anoxic sediment around fumaroles on a submarine caldera floor based on the small-subunit rDNA phylogeny

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Recent culture-independent molecular analyses have shown the diversity and ecological importance of microbial eukaryotes (protists) in various marine environments. In the present study we directly extracted DNA from anoxic sediment near active fumaroles on a submarine caldera floor at a depth of 200 m and constructed genetic libraries of PCR-amplified eukaryotic small-subunit (SSU) rDNA. By sequencing cloned SSU rDNA of the libraries and their phylogenetic analyses, it was shown that most sequences have affiliations with known major lineages of eukaryotes (Cercozoa, Alveolata, stramenopiles and Opisthokonta). In particular, some sequences were closely related to those of representatives of eukaryotic parasites, such as Phagomyxa and Cryothecomonas of Cercozoa, Pirsonia of stramenopiles and Ichthyosporea of Opisthokonta, although it is not clear whether the organisms occur in free-living or parasitic forms. In addition, other sequences did not seem to be related to any described eukaryotic lineages suggesting the existence of novel eukaryotes at a high-taxonomic level in the sediment. The community composition of microbial eukaryotes in the sediment we surveyed was different overall from those of other anoxic marine environments previously investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  • Amaral Zettler LA, Gómez F, Zettler E, Keenan BG, Amils R, Sogin ML (2002) Eukaryotic diversity in Spain’s River of Fire. Nature 417:137

    Google Scholar 

  • Aramaki S, Ui T (1966) The Aira and Ata pyroclastic flow and related caldera and depressions in southern Kyushu, Japan. Bull Volcanol 29:29–48

    Google Scholar 

  • Berney C, Fahrni J, Pawlowski J (2004) How many novel eukaryotic ‘kingdoms’? Pitfalls and limitations of environmental DNA surveys. BMC Biol 2:13

    Google Scholar 

  • Bulman SR, Kühn SF, Marshall JW, Schnepf E (2001) A phylogenetic analysis of the SSU rRNA from members of the Plasmodiophorida and Phagomyxida. Protist 152:43–51

    Google Scholar 

  • Cavalier-Smith T, Chao EE (2003) Phylogeny and classification of phylum Cercozoa (Protozoa). Protist 154:341–358

    Google Scholar 

  • Dawson SC, Pace NR (2002) Novel kingdom-level eukaryotic diversity in anoxic environments. Proc Natl Acad Sci USA 99:8324–8329

    Google Scholar 

  • Díez B, Pedrós-Alió C, Massana (2001) Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl Environ Microbiol 67:2932–2941

    Google Scholar 

  • Drebes G, Kühn SF, Gmelch A, Schnepf E (1996) Cryothecomonas aestivalis sp. nov., a colourless nanoflagellate feeding on the marine centric diatom Guinardia delicatula (Cleve) Hasle. Helgol Wiss Meeresunters 50:497–515

    Google Scholar 

  • Edgcomb VP, Kysela DT, Teske A, de Vera Gomez A, Sogin ML (2002) Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc Natl Acad Sci USA 99:7658–7662

    Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Hashimoto J, Miura T, Fujikura K, Ossaka J (1993) Discovery of Vestimentiferan tube-worms in the euphotic zone. Zoolog Sci 10:1063–1067

    Google Scholar 

  • Hugenholtzt P, Huber T (2003) Chimeric 16S rDNA sequences of diverse origin are accumulating in the public databases. Int J Syst Evol Microbiol 53:289–293

    Article  CAS  PubMed  Google Scholar 

  • Ikemoto E, Kyo M (1993) Development of microbiological compact mud sampler. JAMSTEC Res (In Japanese with English abstract) 30:1–16

    Google Scholar 

  • Knoll AH (1999) A new molecular window on early life. Science 285:1025–1026

    Google Scholar 

  • Kühn S, Drebes G, Schnepf E (1996) Five species of the nanoflagellate Pirsonia in the German Bight, North Sea, feeding on planktic diatoms. Helgoländer Meeresunters 50:205–222

    Google Scholar 

  • López-García P, Rodriguez-Valera F, Pedros-Alio C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607

    Article  PubMed  Google Scholar 

  • López-García P, Philippe H, Gail F, Moreira D (2003) Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc Natl Acad Sci USA 100:697–702

    Google Scholar 

  • Maidak BL, Cole JR, Lilburn TG, Parker CT Jr, Saxman PR, Farris RJ, Garrity GM, Olsen GJ, Schmidt TM, Tiedje JM (2001) The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174

    Article  CAS  PubMed  Google Scholar 

  • Massana R, Guillou L, Díez B, Pedrós-Alió C (2002) Unveiling the organisms behind novel eukaryotic ribosomal DNA sequences from the ocean. Appl Environ Microbiol 68:4554–4558

    Google Scholar 

  • Massana R, Castresana J, Balague V, Guillou L, Romari K, Groisillier A, Valentin K, Pedrós-Alió C (2004) Phylogenetic and ecological analysis of novel marine stramenopiles. Appl Environ Microbiol 70:3528–3534

    Google Scholar 

  • Matsumoto T (1943) The four gigantic caldera volcanoes of Kyushu. Jpn J Geol Geogr (Special No) 19:1–57

    Google Scholar 

  • Moon-van der Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610

    Article  CAS  PubMed  Google Scholar 

  • Moreira D, López-García P (2003) Are hydrothermal vents oases for parasitic protists? Trends Parasitol 19:556–558

    Google Scholar 

  • Naganuma T (1991) Collection of chemosynthetic sulfur bacteria from a hydrothermal vent and submarine volcanic vents. JAMSTEC Deep Sea Res 7:201–219

    Google Scholar 

  • Oki K, Hayasaka S (1978) Geological study on Kagoshima Bay, South Kyushu, Japan. Part IV - A note on the peculiar mode of occurrence of foraminifers in the bottom sediments of the bay-head area. Rep Fac Sci Kagoshima Univ Earth Sci Biol 11:1–11

    Google Scholar 

  • Ossaka J, Hirabayashi J, Nogami K, Kurosaki M, Hashimoto J (1992) Variation of chemical composition of volcanic gases from the northern part of Kagoshima bay. JAMSTEC Deep Sea Res (In Japanese with English abstract) 8:75–80

    Google Scholar 

  • Pawlowski J, Bolivar I, Fahrni JF, de Vargas C, Gouy M, Zaninetti L (1997) Extreme differences in rates of molecular evolution of foraminifera revealed by comparison of ribosomal DNA sequences and the fossil record. Mol Biol Evol 14:498–505

    Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schnepf E, Drebes G, Elbrächter M (1990) Pirsonia guinardiae, gen. et spec. nov.: a parasitic flagellate on the marine diatom Guinardia flaccida with an unusual mode of food uptake. Helgoländer Meeresunters 44:275–293

    Google Scholar 

  • Schweikert M, Schnepf E (1997) Light and electron microspical observations on Pirsonia punctigerae spec. nov., a nanoflagellate feeding on the marine centric diatom Thalassiosira punctigera. Europ J Protistol 33:168–177

    Google Scholar 

  • Simoneit BRT, Lonsdale PF (1982) Hydrothermal petroleum in mineralized mounds at the seabed of Guayman Basin. Nature 295:198–202

    Google Scholar 

  • Spero HJ (1987) Symbiosis in the planktonic foraminifer, Orbulina universa, and the isolation of its symbiotic dinoflagellate, Gymnodinium beii sp nov. J Phycol 23:307–317

    Google Scholar 

  • Stoeck T, Epstein S (2003) Novel eukaryotic lineages inferred from small-subunit rRNA analyses of oxygen-depleted marine environments. Appl Environ Microbiol 69:2657–2663

    Google Scholar 

  • Stoeck T, Taylor GT, Epstein SS (2003) Novel eukaryotes from the permanently anoxic Cariaco Basin (Caribbean Sea). Appl Environ Microbiol 69:5656–5663

    Google Scholar 

  • Swofford DL, Waddell PJ, Huelsenbeck JP, Foster PG, Lewis PO, Rogers J (2001) Bias in phylogenetic estimation and its relevance to the choice between parsimony and likelihood methods. Syst Biol 50:525–539

    Google Scholar 

  • Takahashi T (1981) Seasonal differences of the circulation processes in a coastal basin nearly closed by land. Ocean Manag 6:189–200

    Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nuc Acids Res 22:4673–4680

    Google Scholar 

  • Tillmann U, Hesse KJ, Tillmann A (1999) Large-scale parasitic infection of diatoms in the Northfrisian Wad-den Sea. J Sea Res 42:255–261

    Google Scholar 

  • Yamanaka T, Mizota C, Murae T, Hashimoto J (1999) A current forming petroleum associated with hydrothermal mineralization in a submarine caldera, Kagoshima Bay, Japan. Geochem J 33:355–367

    Google Scholar 

  • Yamanaka T, Ishibashi J, Hashimoto J (2000) Organic geochemistry of hydrothermal petroleum generated in the submarine Wakamiko caldera, southern Kyushu, Japan. Org Geochem 31:1117–1132

    Google Scholar 

Download references

Acknowledgements

We thank Drs. D. Roberts (The Natural History Museum) and J. Reimer (JAMSTEC) for critical reading of the manuscript; Dr. M. Tsuchiya (JAMSTEC) for providing a set of PCR primers specific for the foraminiferan SSU rDNA; Drs. M. Nishijima (NCIMB Japan) and K. Ohki (Kagoshima University) for useful information; the captain and crew of the R/V Natsushima and the commander, pilots and operation team of the ROV Hyper-Dolphin for thier dedicated efforts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyotaka Takishita.

Additional information

Communicated by K. Horikoshi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takishita, K., Miyake, H., Kawato, M. et al. Genetic diversity of microbial eukaryotes in anoxic sediment around fumaroles on a submarine caldera floor based on the small-subunit rDNA phylogeny. Extremophiles 9, 185–196 (2005). https://doi.org/10.1007/s00792-005-0432-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-005-0432-9

Keywords

Navigation