Skip to main content
Log in

Mechanistic basis of hypermethioninemia

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Hypermethioninemia is a condition defined as elevated plasma methionine levels and may be a consequence of different conditions that include non-genetic and genetic causes. In severe cases, hypermethioninemia may lead to development of neurological and hepatic impairments, but mechanisms are still not well elucidated. Therefore, this review aims to reunite the knowledge acquired about the methionine-induced brain and liver toxicity focusing on the results obtained by studies from patients, in vitro experiments, and in vivo animal models. In general, some studies have shown that methionine decreases Na+,K+-ATPase activity, induces oxidative stress, increases acetylcholinesterase activity, and leads to dendritic spine downregulation in brain. Concerning to liver, hypermethioninemia seems to provoke changes in cell morphology, lipid accumulation, oxidative stress, inflammation, and ATP depletion. It is possible to infer that oxidative damage is one of the most important mechanisms responsible for methionine toxicity, since different studies showed that this amino acid induces oxidative stress in brain and liver tissues. Besides, reactive oxygen species may mediate other alterations induced by methionine, such as the reduction in brain Na+,K+-ATPase activity, and liver inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acker CI, Luchese C, Prigol M, Nogueira CW (2009) Antidepressant-like effect of diphenyl diselenide on rats exposed to malathion: involvement of Na+, K+-ATPase activity. Neurosci Lett 455:168–172

    Article  CAS  PubMed  Google Scholar 

  • Angulo P (2010) Long-term mortality in nonalcoholic fatty liver disease: is liver histology of any prognostic significance? Hepatology 51:373–375

    Article  PubMed  PubMed Central  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Bartus RT, Dean RL, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–414

    Article  CAS  PubMed  Google Scholar 

  • Beatty PW, Reed DJ (1980) Involvement of the cystathionine pathway in the biosynthesis of glutathione by isolated rat hepatocytes. Arch Biochem Biophys 204:80–87

    Article  CAS  PubMed  Google Scholar 

  • Benevenga NJ, Steele RD (1984) Adverse effects of excessive consumption of amino acids. Annu Rev Nutr 4:157–181

    Article  CAS  PubMed  Google Scholar 

  • Bird G (1994) Interleukin-8 in alcoholic liver disease. Acta Gastroenterol Belg 57:255–259

    CAS  PubMed  Google Scholar 

  • Bradbury MW (2006) Lipid Metabolism and Liver Inflammation. I. Hepatic fatty acid uptake: possible role in steatosis. Am J Physiol Gastrointest Liver Physiol 290:194–198

    Article  CAS  Google Scholar 

  • Braverman NE, Mudd SH, Barker PB, Pomper MG (2005) Characteristic MRI changes in severe hypermethioninemic states. Am J Neuroradiol 26:2705–2706

    PubMed  Google Scholar 

  • Brot N, Weissbach L, Werth J, Weissbach H (1981) Enzymatic reduction of protein-bound methionine sulfoxide. Proc Natl Acad Sci USA 78:2155–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai J, Sun WM, Hwang JJ, Stain SC, Lu SC (1996) Changes in S-Adenosylmethionine synthetase in human liver cancer: molecular characterization and significance. Hepatology 24:1090–1097

    Article  CAS  PubMed  Google Scholar 

  • Cannon SC (2004) Paying the price at the pump: dystonia from mutations in a Na+, K+-ATPase. Neuron 43:153–154

    Article  CAS  PubMed  Google Scholar 

  • Cantoni GL (1953) S-Adenosylmethionine; a new intermediate formed enzymatically from l-methionine and adenosinetriphosphate. J Biol Chem 204:403–416

    CAS  Google Scholar 

  • Caro P, Gómez J, López-Torres M, Sánchez I, Naudí A, Jove M, Pamplona R, Barja G (2008) Forty percent and eighty percent methionine restriction decrease mitochondrial ROS generation and oxidative stress in rat liver. Biogerontology 9:183–196

    Article  CAS  PubMed  Google Scholar 

  • Chamberlin ME, Ubagai T, Mudd SH, Wilson WG, Leonard JV, Chou JY (1996) Demyelination of the brain is associated with methionine adenosyltransferase I/III deficiency. J Clin Invest 98:1021–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chamberlin ME, Ubagai T, Mudd SH, Levy HL, Chou JY (1997) Dominant inheritance of isolated hypermethioninemia is associated with a mutation in the human methionine adenosyltransferase 1A gene. Am J Hum Genet 60:540–546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang PK, Gordon RK, Tal J, Zeng GC, Doctor BP, Pardhasaradhi K, McCann PP (1996) S-Adenosylmethionine and methylation. FASEB J 10:471–480

    CAS  PubMed  Google Scholar 

  • Cooper AJ (1989) Methionine transamination in vivo. Biochem J 262:689–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa MZ, da Silva TM, Flores NP, Schmitz F, da Silva Scherer EB, Viau CM, Saffi J, Barschak AG, de Souza Wyse AT, Spanevello RM, Stefanello FM (2013) Methionine and methionine sulfoxide alter parameters of oxidative stress in the liver of young rats: in vitro and in vivo studies. Mol Cell Biochem 384:21–28

    Article  CAS  PubMed  Google Scholar 

  • Crill CM, Helms RA (2007) The use of carnitine in pediatric nutrition. Nutr Clin Pract 22:204–213

    Article  PubMed  Google Scholar 

  • de la Haba G, Cantoni GL (1959) The enzymatic synthesis of S-adenosyl-L-homocysteine from adenosine and homocysteine. J Biol Chem 234:603–608

    Google Scholar 

  • de Lores Arnaiz GR, Ordieres MG (2014) Brain Na+, K+-ATPase activity in aging and disease. Int J Biomed Sci 10:85–102

    PubMed  PubMed Central  Google Scholar 

  • de Souza Wyse AT, Streck EL, Worm P, Wajner A, Ritter F, Netto CA (2000) Preconditioning prevents the inhibition of Na+, K+-ATPase activity after brain ischemia. Neurochem Res 25:971–975

    Article  PubMed  Google Scholar 

  • Dever JT, Elfarra AA (2008) l-methionine toxicity in freshly isolated mouse hepatocytes is gender-dependent and mediated in part by transamination. J Pharmacol Exp Ther 326:809–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong R, Zheng S (2015) Interleukin-8: aA critical chemokine in biliary atresia. J Gastroenterol Hepatol 30:970–976

    Article  CAS  PubMed  Google Scholar 

  • Earle DP, Smull K, Victor J (1942) Effects of excess dietary cysteic acid, dl-methionine, and taurine on the rat liver. J Exp Med 76:317–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Refaey M, Watkins CP, Kennedy EJ, Chang A, Zhong Q, Ding KH, Shi XM, Xu J, Bollag WB, Hill WD, Johnson M, Hunter M, Hamrick MW, Isales CM (2015) Oxidation of the aromatic amino acids tryptophan and tyrosine disrupts their anabolic effects on bone marrow mesenchymal stem cells. Mol Cell Endocrinol 410:87–96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferreira AG, Stefanello FM, Cunha AA, da Cunha MJ, Pereira TC, Bonan CD, Bogo MR, Netto CA, Wyse AT (2011) Role of antioxidants on Na+, K+-ATPase activity and gene expression in cerebral cortex of hyperprolinemic rats. Metab Brain Dis 26:141–147

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein JD (1990) Methionine metabolism in mammals. J Nutr Biochem 1:228–237

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein JD (1998) Methionine-sparing effect of cystine in human subjects. Am J Clin Nutr 68:224–225

    CAS  PubMed  Google Scholar 

  • Finkelstein JD (2000) Pathways and regulation of homocysteine metabolism in mammals. Semin Thromb Hemost 26:219–225

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein A, Benevenga NJ (1986) The effect of methanethiol and methionine toxicity on the activities of cytochrome c oxidase and enzymes involved in protection from peroxidative damage. J Nutr 116:204–215

    CAS  PubMed  Google Scholar 

  • Frago LM, Giménez A, Rodriguez EN, Varela-Nieto I (1998) Pattern of methionine adenosyltransferase isoenzyme expression during rat liver regeneration after partial hepatectomy. FEBS Lett 426:305–308

    Article  CAS  PubMed  Google Scholar 

  • Gamaro GD, Streck EL, Matté C, Prediger ME, Wyse AT, Dalmaz C (2003) Reduction of hippocampal Na+, K+ATPase activity in rats subjected to an experimental model of depression. Neurochem Res 28:1339–1344

    Article  CAS  PubMed  Google Scholar 

  • Gaull GE, Bender AN, Vulovic D, Tallan HH, Schaffner F (1981a) Methioninemia and myopathy: a new disorder. Ann Neurol 9:423–432

    Article  CAS  PubMed  Google Scholar 

  • Gaull GE, Tallan HH, Lonsdale D, Przyrembel H, Schaffner F, von Bassewitz DB (1981b) Hypermethioninemia associated with methionine adenosyltransferase deficiency: clinical, morphologic, and biochemical observations on four patients. J Pediatr 98:734–741

    Article  CAS  PubMed  Google Scholar 

  • Geronikaki AA, Gavalas AM (2006) Antioxidants and inflammatory disease: Synthetic and natural antioxidants with anti-inflammatory activity. Comb Chem High Throughput Screen 9:425–442

    Article  CAS  PubMed  Google Scholar 

  • Gil B, Casado M, Pajares MA, Bosca L, Mato JM, Martin-Sanz P, Alvarez L (1996) Differential expression pattern of S-adenosylmethionine synthetase isozymes during rat liver development. Hepatology 24:876–881

    CAS  PubMed  Google Scholar 

  • Glynn IM (1985) The Na+, K+-transporting adenosine triphosphatase. In: Martonosi AN (ed) The enzymes of biological membranes. Plenum, New York, pp 35–114

    Chapter  Google Scholar 

  • Gomez J, Caro P, Sanchez I, Naudi A, Jove M, Portero-Otin M, Lopez-Torres M, Pamplona R, Barja G (2009) Effect of methionine dietary supplementation on mitochondrial oxygen radical generation and oxidative DNA damage in rat liver and heart. J Bioenerg Biomembr 41:309–321

    Article  CAS  PubMed  Google Scholar 

  • Gout JP, Serre JC, Dieterlen M, Antener I, Frappat P, Bost M, Beaudoing A (1977) Still another cause of hypermethioninemia in children: S-adenosylmethionine synthetase deficiency. Arch Fr Pediatr 34:416–423

    CAS  PubMed  Google Scholar 

  • Grayson DR, Chen Y, Dong E, Kundakovic M, Guidotti A (2009) From trans-methylation to cyotsine methylation evolution of the methylation hypothesis of schizophrenia. Epigenetics 4:144–149

    Article  CAS  PubMed  Google Scholar 

  • Grisar T, Guillaume D, Delgado-Escueta AV (1992) Contribution of Na+, K+-ATPase to focal epilepsy: a brief review. Epilepsy Res 12:141–149

    Article  CAS  PubMed  Google Scholar 

  • Guízar Vázquez J, Sánchez Aguilar G, Velázquez A, Fragoso R, Rostenberg I, Alejandre I (1980) Hypermethioninemia. Apropos of a case in a consanguineous couple. Bol Med Hosp Infant Mex 37:1237–1244

    PubMed  Google Scholar 

  • Hardwick DF, Applegarth DA, Cockcroft DM, Ross PM, Cder RJ (1970) Pathogenesis of methionine-induced toxicity. Metabolism 19:381–391

    Article  CAS  PubMed  Google Scholar 

  • Harvey Mudd S, Braverman N, Pomper M, Tezcan K, Kronick J, Jayakar P, Garganta C, Ampola MG, Levy HL, McCandless SE, Wiltse H, Stabler SP, Allen RH, Wagner C, Borschel MW (2003) Infantile hypermethioninemia and hyperhomocysteinemia due to high methionine intake: a diagnostic trap. Mol Genet Metab 79:6–16

    Article  CAS  PubMed  Google Scholar 

  • Higashi T (1982) Impaired metabolism of methionine in severe liver diseases. II. Clinical and experimental studies on role of impaired methionine metabolism in pathogenesis of hepatic encephalopathy. J Gastroenterol 17:125–134

    CAS  Google Scholar 

  • Hirche F, Schröder A, Knoth B, Stangl GI, Eder K (2006) Effect of dietary methionine on plasma and liver cholesterol concentrations in rats and expression of hepatic genes involved in cholesterol metabolism. Br J Nutr 95:879–888

    Article  CAS  PubMed  Google Scholar 

  • Horikawa S, Sasuga J, Shimizu K, Ozasa H, Tsukada K (1990) Molecular cloning and nucleotide sequence of cDNA encoding the rat kidney S-adenosylmethionine synthetase. J Biol Chem 265:13683–13686

    CAS  PubMed  Google Scholar 

  • Horikawa S, Ozasa H, Ota K, Tsukada K (1993) Immunohistochemical analysis of rat Sadenosylmethionine synthetase isozymes in developmental liver. FEBS Lett 330:307–311

    Article  CAS  PubMed  Google Scholar 

  • Jayatilleke A, Shaw S (1998) Stimulation of monocyte interleukin-8 by lipid peroxidation products: a mechanism for alcohol-induced liver injury. Alcohol 16:119–123

    Article  CAS  PubMed  Google Scholar 

  • Labrune P, Perignon JL, Rault M, Brunet C, Lutun H, Charpentier C, Saudubray JM, Odievre M (1990) Familial hypermethioninemia partially responsive to dietary restriction. J Pediatr 117:220–226

    Article  CAS  PubMed  Google Scholar 

  • Lagler F, Muntau AC, Beblo S, Röschinger W, Linnebank M, Fowler B, Koch HG, Roscher AA (2000) Hypermethioninemia and hyperhomocysteinemia in methionine adenosyltransferase I/III deficiency. J Inherit Metab Dis 23:68

    Google Scholar 

  • Levenson JM, Qiu S, Weeber EJ (2008) The role of reelin in adult synaptic function and the genetic and epigenetic regulation of the reelin gene. Biochem Biophys Acta 1779:422–431

    CAS  PubMed  Google Scholar 

  • Levy HL, Shih VE, Madigan PM, Karolkewicz V, Carr JR, Lum A, Richards AA, Crawford JD, Maccready RA (1969) Hypermethioninemia with other hyperaminoacidemias. Studies in infants on high-protein diets. Am J Dis Child 117:96–103

    Article  CAS  PubMed  Google Scholar 

  • Lu SC, Alvarez L, Huang ZZ, Chen L, An W, Corrales FJ, Avila MA, Kanel G, Mato JM (2001) Methionine adenosyltransferase 1A knockout mice are predisposed to liver injury and exhibit increased expression of genes involved in proliferation. Proc Natl Acad Sci USA 98:5560–5565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas-Lenard J (1971) Protein biosynthesis. Annu Rev Biochem 40:409–448

    Article  CAS  PubMed  Google Scholar 

  • Lynch SM, Strain J (1989) Increased hepatic lipid peroxidation with methionine toxicity in the rat. Free Radic Res Commun 5:221–226

    Article  CAS  PubMed  Google Scholar 

  • Machado FR, Ferreira AG, da Cunha AA, Tagliari B, Mussulini BH, Wofchuk S, Wyse AT (2011) Homocysteine alters glutamate uptake and Na+, K+-ATPase activity and oxidative status in rats hippocampus: protection by vitamin C. Metab Brain Dis 26:61–67

    Article  CAS  PubMed  Google Scholar 

  • Malloy V, Krajcik R, Bailey S, Hristopoulos G, Plummer J, Orentreich N (2006) Methionine restriction decreases visceral fat mass and preserves insulin action in aging male Fischer 344 rats independent of energy restriction. Aging Cell 5:305–314

    Article  CAS  PubMed  Google Scholar 

  • Malloy VL, Perrone CE, Mattocks DA, Ables GP, Caliendo NS, Orentreich DS, Orentreich N (2013) Methionine restriction prevents the progression of hepatic steatosis in leptin-deficient obese mice. Metabolism 62:1651–1661

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Chantar ML, Corrales FJ, Martínez-Cruz LA, García-Trevijano ER, Huang ZZ, Chen L, Kanel G, Avila MA, Mato JM, Lu SC (2002) Spontaneous oxidative stress and liver tumors in mice lacking methionine adenosyltransferase 1A. FASEB J 16:1292–1294

    PubMed  Google Scholar 

  • Matté C, Monteiro SC, Calcagnotto T, Bavaresco CS, Netto CA, Wyse AT (2004) In vivo and in vitro effects of homocysteine on Na+, K+-ATPase activity in parietal, prefrontal and cingulate cortex of young rats. Int J Dev Neurosci 22:185–190

    Article  PubMed  CAS  Google Scholar 

  • Matté C, Mackedanz V, Stefanello FM, Scherer EB, Andreazza AC, Zanotto C, Moro AM, Garcia SC, Gonçalves CA, Erdtmann B, Salvador M, Wyse AT (2009a) Chronic hyperhomocysteinemia alters antioxidant defenses and increases DNA damage in brain and blood of rats: protective effect of folic acid. Neurochem Int 54:7–13

    Article  PubMed  CAS  Google Scholar 

  • Matté C, Stefanello FM, Mackedanz V, Pederzolli CD, Lamers ML, Dutra-Filho CS, Dos Santos MF, Wyse AT (2009b) Homocysteine induces oxidative stress, inflammatory infiltration, fibrosis and reduces glycogen/glycoprotein content in liver of rats. Int J Dev Neurosci 27:337–344

    Article  PubMed  CAS  Google Scholar 

  • Mori N, Hirayama K (2000) Long-term consumption of methionine-supplemented diet increases iron and lipid peroxide levels in rat liver. J Nutr 130:2349–2355

    CAS  PubMed  Google Scholar 

  • Mosharov E, Cranford MR, Benerjee R (2000) The quantitatively important relationship between homocysteine metabolism and glutathione synthesis by the transsulfuration pathway and its regulation by redox changes. Biochemistry 39:13005–13011

    Article  CAS  PubMed  Google Scholar 

  • Moss RL, Haynes AL, Pastuszyn A, Glew RH (1999) Methionine infusion reproduces liver injury of parenteral nutrition cholestasis. Pediatr Res 45:664–668

    Article  CAS  PubMed  Google Scholar 

  • Mudd SH (1962) Activation of methionine for transmethylation. V. The mechanism of action of the methionine-activating enzyme. J Biol Chem 237:1372–1375

    CAS  PubMed  Google Scholar 

  • Mudd SH (2011) Hypermethioninemias of genetic and non-genetic origin: a review. Am J Med Genet C Semin Med Genet 157:3–32

    Article  CAS  Google Scholar 

  • Mudd SH, Levy HL, Tangerman A, Boujet C, Buist N, Davidson-Mundt A, Hudgins L, Oyanagi K, Nagao M, Wilson WG (1995) Isolated persistent hypermethioninemia. Am J Hum Genet 57:882–892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mudd SH, Levy HL, Kraus JP (2001) Disorders of transsulfuration. In: Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 2007–2056

    Google Scholar 

  • Mynett-Johnson L, Murphy V, McCormack J, Shields DC, Claffey E, Manley P, McKeon P (1998) Evidence for an allelic association between bipolar disorder and a Na+, K+ adenosine triphosphatase alpha subunit gene (ATP1A3). Biol Psych 44:47–51

    Article  CAS  Google Scholar 

  • Nagao M, Oyanagi K (1997) Genetic analysis of isolated persistent hypermethioninemia with dominant inheritance. Acta Paediatr Jpn 39:601–606

    Article  CAS  PubMed  Google Scholar 

  • Ohura T, Kobayashi K, Abukawa D, Tazawa Y, Aikawa J, Sakamoto O, Saheki T, Iinuma K (2003) A novel inborn error of metabolism detected by elevated methionine and/or galactose in newborn screening: neonatal intrahepatic cholestasis caused by citrin deficiency. Eur J Pediatr 162:317–322

    CAS  PubMed  Google Scholar 

  • Okada G, Teraoka H, Tsukada K (1981) Multiple species of mammalian S-adenosylmethionine synthetase. Partial purification and characterization. Biochemistry 20:934–940

    Article  CAS  PubMed  Google Scholar 

  • Osmond H, Smythies J (1952) Schizophrenia: a new approach. J Ment Sci 98:309–315

    CAS  PubMed  Google Scholar 

  • Regina M, Korhonen VP, Smith TK, Alakuijala L, Eloranta TO (1993) Methionine toxicity in the rat in relation to hepatic accumulation of S-adenosylmethionine: prevention by dietary stimulation of the hepatic transsulfuration pathway. Arch Biochem Biophys 300:598–607

    Article  CAS  PubMed  Google Scholar 

  • Regland B, Abrahamsson L, Blennow K, Grenfeldt B, Gottfries CG (2004) CSF-methionine is elevated in psychotic patients. J Neural Transm 111:631–640

    Article  CAS  PubMed  Google Scholar 

  • Scherer EB, da Cunha AA, Kolling J, da Cunha MJ, Schmitz F, Sitta A, Lima DD, Delwing D, Vargas CR, Wyse AT (2011) Development of an animal model for chronic mild hyperhomocysteinemia and its response to oxidative damage. Int J Dev Neurosci 29:693–699

    Article  CAS  PubMed  Google Scholar 

  • Scherer EB, Loureiro SO, Vuaden FC, Schmitz F, Kolling J, Siebert C, Savio LE, Schweinberger BM, Bogo MR, Bonan CD, Wyse AT (2013) Mild hyperhomocysteinemia reduces the activity and immunocontent, but does not alter the gene expression, of catalytic α subunits of cerebral Na+, K+-ATPase. Mol Cell Biochem 378:91–97

    Article  CAS  PubMed  Google Scholar 

  • Scherer EB, Loureiro SO, Vuaden FC, da Cunha AA, Schmitz F, Kolling J, Savio LE, Bogo MR, Bonan CD, Netto CA, Wyse AT (2014) Mild hyperhomocysteinemia increases brain acetylcholinesterase and proinflammatory cytokine levels in different tissues. Mol Neurobiol 50:589–596

    Article  CAS  PubMed  Google Scholar 

  • Schreuder TC, Verwer BJ, van Nieuwkerk CM, Mulder CJ (2008) Nonalcoholic fatty liver disease: an overview of current insights in pathogenesis, diagnosis and treatment. World J Gastroenterol 14:2474–2486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulpis KH, Kalimeris K, Bakogiannis C, Tsakiris T, Tsakiris S (2006) The effect of in vitro homocystinuria on the suckling rat hippocampal acetylcholinesterase. Metab Brain Dis 21:21–28

    Article  CAS  PubMed  Google Scholar 

  • Schweinberger BM, Schwieder L, Scherer E, Sitta A, Vargas CR, Wyse AT (2014) Development of an animal model for gestational hypermethioninemia in rat and its effect on brain Na+, K+-ATPase/Mg2+-ATPase activity and oxidative status of the offspring. Metab Brain Dis 29:153–160

    Article  CAS  PubMed  Google Scholar 

  • Scislowski PW, Pickard K (1993) Methionine transamination–metabolic function and subcellular compartmentation. Mol Cell Biochem 129:39–45

    Article  CAS  PubMed  Google Scholar 

  • Selhub J (1999) Homocysteine metabolism. Annu Rev Nutr 19:217–246

    Article  CAS  PubMed  Google Scholar 

  • Shinozuka H, Estes LW, Farber E (1971) Studies on acute methionine toxicity. I. Nucleolar disaggregation in guinea pig hepatic cells with methionine or ethionine and its reversal with adenine. Am J Pathol 64:241–256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stabler SP, Steegborn C, Wahl MC, Oliveriusova J, Kraus JP, Allen RH, Wagner C, Mudd SH (2002) Elevated plasma total homocysteine in severe methionine adenosyltransferase I/III deficiency. Metabolism 51:981–988

    Article  CAS  PubMed  Google Scholar 

  • Steele RD, Benevenga NJ (1978) Identification of 3-methylthiopropionic acid as an intermediate in mammalian methionine metabolism in vitro. J Biol Chem 253:7844–7850

    CAS  PubMed  Google Scholar 

  • Stefanello FM, Chiarani F, Kurek AG, Wannmacher CM, Wajner M, Wyse AT (2005) Methionine alters Na+, K+-ATPase activity, lipid peroxidation and nonenzymatic antioxidant defenses in rat hippocampus. Int J Dev Neurosci 23:651–656

    Article  CAS  PubMed  Google Scholar 

  • Stefanello FM, Matté C, Scherer EB, Wannmacher CM, Wajner M, Wyse AT (2007a) Chemically induced model of hypermethioninemia in rats. J Neurosci Methods 160:1–4

    Article  CAS  PubMed  Google Scholar 

  • Stefanello FM, Scherer EB, Kurek AG, Mattos CB, Wyse AT (2007b) Effect of hypermethioninemia on some parameters of oxidative stress and on Na+, K+-ATPase activity in hippocampus of rats. Metab Brain Dis 22:172–182

    Article  CAS  PubMed  Google Scholar 

  • Stefanello FM, Kreutz F, Scherer EB, Breier AC, Vianna LP, Trindade VM, Wyse AT (2007c) Reduction of gangliosides, phospholipids and cholesterol content in cerebral cortex of rats caused by chronic hypermethioninemia. Int J Dev Neurosci 25:473–477

    Article  CAS  PubMed  Google Scholar 

  • Stefanello FM, Monteiro SC, Matté C, Scherer EB, Netto CA, Wyse AT (2007d) Hypermethioninemia increases cerebral acetylcholinesterase activity and impairs memory in rats. Neurochem Res 32:1868–1874

    Article  CAS  PubMed  Google Scholar 

  • Stefanello FM, Matté C, Pederzolli CD, Kolling J, Mescka CP, Lamers ML, de Assis AM, Perry ML, dos Santos MF, Dutra-Filho CS, Wyse AT (2009) Hypermethioninemia provokes oxidative damage and histological changes in liver of rats. Biochimie 91:961–968

    Article  CAS  PubMed  Google Scholar 

  • Streck EL, Zugno AI, Tagliari B, Wannmacher CMD, Wajner M, Wyse ATS (2002a) Inhibition of Na+, K+-ATPase activity by the metabolites accumulating in homocystinuria. Metab Brain Dis 17:83–91

    Article  CAS  PubMed  Google Scholar 

  • Streck EL, Matte C, Vieira PS, Rombaldi F, Wannmacher CM, Wajner M, Wyse AT (2002b) Reduction of Na+, K+-ATPase activity in hippocampus of rats subjected to chemically induced hyperhomocysteinemia. Neurochem Res 27:1593–1598

    Article  CAS  PubMed  Google Scholar 

  • Tachibana Y, Nakamoto Y, Mukaida N, Kaneko S (2007) Intrahepatic interleukin-8 production during disease progression of chronic hepatitis C. Cancer Lett 251:36–42

    Article  CAS  PubMed  Google Scholar 

  • Taïeb J, Mathurin P, Elbim C, Cluzel P, Arce-Vicioso M, Bernard B, Opolon P, Gougerot-Pocidalo MA, Poynard T, Chollet-Martin S (2000) Blood neutrophil functions and cytokine release in severe alcoholic hepatitis: effect of corticosteroids. J Hepatol 32:579–586

    Article  PubMed  Google Scholar 

  • Toborek M, Kopieczna-Grzebieniak E, Drózdz M, Wieczorek M (1996) Increased lipid peroxidation and antioxidant activity in methionine-induced hepatitis in rabbits. Nutrition 12:534–537

    Article  CAS  PubMed  Google Scholar 

  • Trauner M, Fickert P, Stauber RE (1999) Inflammation-induced cholestasis. J Gastroenterol Hepatol 14:946–959

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiyama A, Oyanagi K, Nakata F, Uetsuji N, Tsugawa S, Nakao T, Mori M (1982) A new type of hypermethioninemia in neonates. Tohoku J Exp Med 138:281–288

    Article  CAS  PubMed  Google Scholar 

  • Tueting P, Davis JM, Veldic M, Pibiri F, Kadriu B, Guidotti A, Costa E (2010) L-methionine decreases dendritic spine density in mouse frontal cortex. NeuroReport 21:543–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valley CC, Cembran A, Perlmutter JD, Lewis AK, Labello NP, Gao J, Sachs JN (2012) The methionine-aromatic motif plays a unique role in stabilizing protein structure. J Biol Chem 287:34979–34991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viggiano A, Viggiano E, Monda M, Ingrosso D, Perna AF, De Luca B (2012) Methionine-enriched diet decreases hippocampal antioxidant defences and impairs spontaneous behaviour and long-term potentiation in rats. Brain Res 1471:66–74

    Article  CAS  PubMed  Google Scholar 

  • Vitvitsky V, Thomas M, Ghorpade A, Gendelman HE, Banerjee R (2006) A functional transsulfuration pathway in the brain links to glutathione homeostasis. J Biol Chem 281:35785–35793

    Article  CAS  PubMed  Google Scholar 

  • Vuaden FC, Savio LE, Piato AL, Pereira TC, Vianna MR, Bogo MR, Bonan CD, Wyse AT (2012) Long-term methionine exposure induces memory impairment on inhibitory avoidance task and alters acetylcholinesterase activity and expression in zebrafish (Danio rerio). Neurochem Res 37:1545–1553

    Article  CAS  PubMed  Google Scholar 

  • Wesseling S, Koeners MP, Joles JA (2009) Taurine: red bull or red herring? Hypertension 53:909–911

    Article  CAS  PubMed  Google Scholar 

  • Wyse AT, Noriler ME, Borges LF, Floriano PJ, Silva CG, Wajner M, Wannmacher CM (1999) Alanine prevents the decrease of Na+, K+-ATPase activity in experimental phenylketonuria. Metab Brain Dis 14:95–101

    Article  CAS  PubMed  Google Scholar 

  • Wyse AT, Bavaresco CS, Reis EA, Zugno AI, Tagliari B, Calcagnotto T, Netto CA (2004) Training in inhibitory avoidance causes a reduction of Na+, K+-ATPase activity in rat hippocampus. Physiol Behav 80:475–479

    Article  CAS  PubMed  Google Scholar 

  • Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80:1107–1213

    CAS  PubMed  Google Scholar 

  • Yalçinkaya S, Unlüçerçi Y, Uysal M (2007) Methionine-supplemented diet augments hepatotoxicity and prooxidant status in chronically ethanol-treated rats. Exp Toxicol Pathol 58:455–459

    Article  PubMed  CAS  Google Scholar 

  • Yalçinkaya S, Unlüçerçi Y, Giris M, Olgac V, Dogru-Abbasoglu S, Uysal M (2009) Oxidative and nitrosative stress and apoptosis in the liver of rats fed on high methionine diet: protective effect of taurine. Nutrition 25:436–444

    Article  PubMed  CAS  Google Scholar 

  • Yamada H, Akahoshi N, Kamata S, Hagiya Y, Hishiki T, Nagahata Y, Matsuura T, Takano N, Mori M, Ishizaki Y, Izumi T, Kumagai Y, Kasahara T, Suematsu M, Ishii I (2012) Methionine excess in diet induces acute lethal hepatitis in mice lacking cystathionine γ-lyase, an animal model of cystathioninuria. Free Radic Biol Med 52:1716–1726

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Kadowaki M (2011) Addition of methionine to rice protein affects hepatic cholesterol output inducing hypocholesterolemia in rats fed cholesterol-free diets. J Med Food 14:445–453

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Pan F, Gan WB (2009) Stably maintained dendritic spines are associated with lifelong memories. Nature 462:920–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ying Y, Yun J, Guoyao W, Kaiji S, Zhaolai D, Zhenlong W (2015) Dietary L-methionine restriction decreases oxidative stress in porcine liver mitochondria. Exp Gerontol 65:35–41

    Article  CAS  PubMed  Google Scholar 

  • Zhang LN, Sun YJ, Pan S, Li JX, Qu YE, Li Y, Wang YL, Gao ZB (2013) Na+, K+-ATPase, a potent neuroprotective modulator against Alzheimer disease. Fundam Clin Pharmacol 27:96–103

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann HW, Seidler S, Gassler N, Nattermann J, Luedde T, Trautwein C, Tacke F (2011) Interleukin-8 is activated in patients with chronic liver diseases and associated with hepatic macrophage accumulation in human liver fibrosis. PLoS One 6:e21381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela T. S. Wyse.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: C.-A. A. Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schweinberger, B.M., Wyse, A.T.S. Mechanistic basis of hypermethioninemia. Amino Acids 48, 2479–2489 (2016). https://doi.org/10.1007/s00726-016-2302-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2302-4

Keywords

Navigation