Skip to main content

The Na+, K+-Transporting Adenosine Triphosphatase

  • Chapter
The Enzymes of Biological Membranes

Abstract

The Na+,K+-transporting adenosine triphosphatase (Na+,K+-ATPase), also often known as the sodium pump or sodium-potassium pump, is an enzyme, found in nearly all animal-cell membranes, that uses energy from the hydrolysis of intracellular ATP to transport Na+ ions outwards and K+ ions inwards. It may be thought of as having three substrates (ATP, intracellular Na+ ions, and extracellular K+ ions) and four products (ADP, orthophosphate, extracellular Na+ ions, and intracellular K+ ions.) Because more Na+ ions are pumped out than K+ ions are pumped in, the activity of the enzyme generates an outward movement of positive charge, and this outward current may also be considered a “product” of the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abercrombie, R. F., and De Weer, P., 1978, Electric current generated by squid giant axon sodium pump: External K and internal ADP effects. Am. J. Physiol. 235 (1): C63 - C68.

    PubMed  CAS  Google Scholar 

  • Akera, T., 1981, Effects of cardiac glycosides on Na+,K+-ATPase, in: Handbook of Experimental Pharmacology, Vol. 56/I ( K. Greeff, ed.), Springer-Verlag, Berlin, pp. 287–336.

    Google Scholar 

  • Akera, T., and Brody, T. M., 1971, Membrane adenosine triphosphatase: The effect of potassium on the formation and dissociation of the ouabain-enzyme complex, J. Pharmacol. Exp. Ther. 176: 545–557.

    PubMed  CAS  Google Scholar 

  • Albers, R. W., Fahn, S., and Koval, G. J., 1963, The role of sodium ions in the activation of Electrophorus electric organ adenosine triphosphatase, Proc. Natl. Acad. Sci. USA 50: 474–481.

    PubMed  CAS  Google Scholar 

  • Albers, R. W., Koval, G. J., and Siegel, G. J., 1968, Studies on the interaction of ouabain and other cardio-active steroids with sodium-potassium-activated adenosine triphosphatase, Mol. Pharmacol. 4: 324–336.

    PubMed  CAS  Google Scholar 

  • Anner, B. M., Lane, L. K., Schwartz, A., and Pitts, B. J. R., 1977, A reconstituted Na+ + K’ pump in liposomes containing purified (Na- + K’)-ATPase from kidney medulla, Biochim. Biophys. Acta 467: 340–345.

    PubMed  CAS  Google Scholar 

  • Askari, A., and Huang, W-H., 1980, Na’,K -ATPase: Half of the subunits cross-linking reactivity suggests an oligomeric structure containing a minimum of four catalytic subunits, Biochem. Biophys. Res. Commun. 93: 448–453.

    PubMed  CAS  Google Scholar 

  • Askari, A., and Huang, W-H., 1981, Nat,K’-ATPase: (Ca’ + ouabain)-dependent phosphorylation by P„ FEBS Lett. 126: 215–218.

    PubMed  CAS  Google Scholar 

  • Askari, A., and Huang, W-H., 1983, Na,K“-ATPase: relation of quaternary conformational transitions to function, Current Topics in Membranes and Transport 19 (in press).

    Google Scholar 

  • Askari, A., and Koyal, D., 1971, Studies on the partial reactions catalyzed by the (Na’ + K’)-activated ATPase. I1. Effects of oligomycin and other inhibitors of the ATPase on the p-nitrophenylphosphatase, Biochim. Biophys. Acta 225: 20–25.

    PubMed  CAS  Google Scholar 

  • Askari, A., Huang, W., and Henderson, G. R., 1979, Na,K-ATPase: Functional and structural modifications induced by mercurials, in: Na,K-ATPase: Structure and Kinetics (J. C. Skou and J. G. Nrby, eds.), Academic Press, London, pp. 205–215.

    Google Scholar 

  • Askari, A., Huang, W-H., and Antieau, J. M., 1980, Na’,K’-ATPase: Ligand-induced conformational transitions and alterations in subunit interactions evidenced by cross-linking studies, Biochemistry 19: 1132–1140.

    PubMed  CAS  Google Scholar 

  • Askari, A., Huang, W-H., and McCormick, P. W., 1983, (Na+ K+)-dependent adenosine triphosphatase: Regulation of inorganic phosphate, magnesium ion and calcium ion interactions with the enzyme by ouabain, J. Biol. Chem., 258:3453–3460.

    Google Scholar 

  • Bader, H., and Sen, A. K., 1966, (K+)-dependent acyl phosphatase as part of the (Na’ + K’)-dependent ATPase of cell membranes, Biochim. Biophys. Act 118:116–123.

    Google Scholar 

  • Baker, E., and Simmonds, W. J., 1966, Membrane ATPase and electrolyte levels in marsupial erythrocytes, Biochim. Biophys. Acta 126: 492–499.

    PubMed  CAS  Google Scholar 

  • Baker, P. F., and Stone, A. J., 1966, A kinetic method for investigating hypothetical models of the sodium pump, Biochim. Biophys. Acta 126: 321–329.

    PubMed  CAS  Google Scholar 

  • Baker, P. F., and Willis, J. S., 1970, Potassium ions and the binding of cardiac glycosides to mammalian cells, Nature 226: 521–523.

    PubMed  CAS  Google Scholar 

  • Baker, P. F., Blaustein, M. P., Hodgkin, A. L., and Steinhardt, R. A., 1969a, The influence of calcium on sodium efflux in squid axons, J. Physiol. 200: 431–468.

    PubMed  CAS  Google Scholar 

  • Baker, P. F., Blaustein, M. P., Keynes, R. D., Manil, J., Shaw, T. I., and Steinhardt, R. A., 1969b, The ouabain-sensitive fluxes of sodium and potassium in squid giant axons, J. Physiol. 200: 459–496.

    PubMed  CAS  Google Scholar 

  • Banerjee, S. P., and Wong, S. M. E., 1972, Effect of potassium on sodium-dependent adenosine diphosphate—adenosine triphosphate exchange activity in kidney microsomes, J. Biol. Chem. 247: 5409–5413.

    PubMed  CAS  Google Scholar 

  • Banerjee, S. P., Wong, S. M. E., Khanna, V. K., and Sen, A. K., 1972a, Inhibition of sodium-and potassium-dependent adenosine triphosphatase by N-ethylmaleimide. I. Effects on sodium-sensitive phosphorylation and potassium-sensitive dephosphorylation, Mol. Pharmacol. 8: 8–17.

    PubMed  CAS  Google Scholar 

  • Banerjee, S. P., Wong, S. M. E., and Sen, A. K., 1972b, Inhibition of sodium-and potassium-dependent adenosine triphosphatase by N-ethylmaleimide. II. Effects on sodium-activated transphosphorylation, Mol. Pharmacol. 8: 18–29.

    PubMed  CAS  Google Scholar 

  • Barnett, R. E., 1970, Effect of monovalent cations on the ouabain inhibition of the sodium and potassium ion activated adenosine triphosphatase, Biochemistry 9: 4644–4648.

    PubMed  CAS  Google Scholar 

  • Bastide, F., Meissner, G., Fleischer, S., and Post, R. L., 1973, Similarity of the active site of phosphorylation of the adenosine triphosphatase for transport of sodium and potassium ions in kidney to that for transport of calcium ions in the sarcoplasmic reticulum of muscle, J. Biol. Chem. 248: 8385–8391.

    PubMed  CAS  Google Scholar 

  • Bayley, H., and Knowles, J. R., 1980, Photogenerated reagents for membranes: Selective labeling of intrinsic membrane proteins in the human erythrocyte membrane, Biochemistry 19: 3883–3892.

    PubMed  CAS  Google Scholar 

  • Beaugé, L. A., 1979, Vanadate-potassium interactions in the inhibition of Na,K-ATPase, in: Na,K-ATPase: Structure and Kinetics (J. C. Skou and J. G. Nurby, eds.), Academic Press, London, pp. 373–387.

    Google Scholar 

  • Beaugé, L. A., and Berberian, G., 1983, The effects of several ligands on the potassium—vanadate interaction in the inhibition of the Na,K-ATPase and the Na-K pump, Biochim. Biophys. Acta, 727: 336–350.

    PubMed  Google Scholar 

  • Beaugé, L. A., and DiPolo, R., 1979a, Vanadate selectively inhibits the K+0-activated Na’ efflux in squid axons, Biochim. Biophys. Acta 551: 220–223.

    PubMed  Google Scholar 

  • Beaugé, L. A., and DiPolo, R., 1979b, Sidedness of the ATP-Na’-K“ interactions with the Na pump in squid axons, Biochim. Biophys. Acta 553: 495–500.

    PubMed  Google Scholar 

  • Beaugé, L. A., and DiPolo, R., 1981, The effects of ATP on the interactions between monovalent cations and the sodium pump in dialysed squid axons, J. Physiol. 314: 457–480.

    PubMed  Google Scholar 

  • Beaugé, L. A., and DiPolo, R., 1983. Sidedness of cations and ATP interactions with the sodium pump. Curr. Top. Membr. Trans. 19: 643–647.

    Google Scholar 

  • Beaugé, L. A., and Glynn, I. M., 1978, Commercial ATP containing traces of vanadate alters the response of (Na“ + K’)-ATPase to external potassium, Nature 272: 551–552.

    PubMed  Google Scholar 

  • Beaugé, L. A., and Glynn, I. M., 1979a, Occlusion of K ions in the unphosphorylated sodium pump, Nature 280: 510–512.

    PubMed  Google Scholar 

  • Beaugé, L. A., and Glynn, I. M., 1979b, Sodium ions, acting at high-affinity extracellular sites, inhibit sodium ATPase activity of the sodium pump by slowing dephosphorylation, J. Physiol. 289: 17–31.

    PubMed  Google Scholar 

  • Beaugé, L. A., and Glynn, I. M., 1980, The equilibrium between different conformations of the unphosphorylated sodium pump: Effects of ATP and of potassium ions, and their relevance to potassium transport, J. Physiol. 299: 367–383.

    PubMed  Google Scholar 

  • Beaugé, L. A., and Ortiz, O., 1973, Na fluxes in rat red blood cells in K-free solutions, J. Membr. Biol. 13: 165–184.

    PubMed  Google Scholar 

  • Beaugé, L. A., Cavieres, J. D., Glynn, I. M., and Grantham, J. J., 1980, The effects of vanadate on the fluxes of sodium and potassium ions through the sodium pump, J. Physiol. 301: 7–23.

    PubMed  Google Scholar 

  • Beeuwkes, R., and Rosen, S., 1975, Renal Na,K-ATPase. Optical localization and X-ray microanalysis, J. Histochem. Cytochem. 23: 828–839.

    PubMed  Google Scholar 

  • Blostein, R., 1968, Relationships between erythrocyte membrane phosphorylation and adenosine triphosphate hydrolysis, J. Biol. Chem. 243; 1957–1965.

    PubMed  CAS  Google Scholar 

  • Blostein, R., 1970, Sodium activated adenosine triphosphatase activity of the erythrocyte membrane, J. Biol. Chem. 245: 270–275.

    PubMed  CAS  Google Scholar 

  • Blostein, R., 1975, Na* ATPase of the mammalian erythrocyte membrane. Reversibility of phosphorylation at O°, J. Biol. Chem. 250: 6118–6124.

    PubMed  CAS  Google Scholar 

  • Blostein, R., 1979, Side-specific effects of sodium on (Na,K)-ATPase, J. Biol. Chem. 254: 6673–6677.

    PubMed  CAS  Google Scholar 

  • Blostein, R., 1983, Sidedness of sodium interactions with the sodium pump in the absence of K’, Curr. Top. Membr. Trans. 19: 649–652.

    CAS  Google Scholar 

  • Blostein, R., and Chu, L., 1977, Sidedness of (sodium, potassium)-adenosine triphosphatase of inside-out red cell membrane vesicles. Interactions with potassium, J. Biol. Chem. 252: 3035–3043.

    PubMed  CAS  Google Scholar 

  • Blostein, R., and Whittington, E. S., 1973, Studies of high potassium and low potassium sheep erythrocyte membrane sodium-adenosine triphosphatase: Interactions with oligomycin, adenosine triphosphate, sodium, and potassium, J. Biol. Chem. 248: 1772–1777.

    PubMed  CAS  Google Scholar 

  • Blostein, R., Pershadsingh, H. A., Drapeau, P., and Chu, L., 1979, Side-specificity of alkali cation interactions with Na,K-ATPase: Studies with inside-out red cell membrane vesicles, in: Na,K-ATPase: Structure and Kinetics ( J. C. Skou and J. G. Nsrby, eds.), London, Academic Press, pp. 233–245.

    Google Scholar 

  • Bodemann, H. H., and Hoffman, J. F., 1976a, Side-dependent effects of internal versus external Na and K on ouabain binding to reconstituted human red blood cell ghosts, J . Gen. Physiol. 67: 497–525.

    PubMed  CAS  Google Scholar 

  • Bodemann, H. H., and Hoffman, J. F., 1976b, Comparison of the side-dependent effects of Na and K on orthophosphate-, UTP- and ATP-promoted ouabain binding to reconstituted human red blood cell ghosts, J. Gen. Physiol. 67: 527–545.

    PubMed  CAS  Google Scholar 

  • Bond, G. H., and Hudgins, P. M., 1981, Dog kidney (Na+,K+)-ATPase is more sensitive to inhibition by vanadate than human red cell (Na+,K +)-ATPase, Biochim. Biophys. Acta 646: 479–482.

    PubMed  CAS  Google Scholar 

  • Bond, G. H., Bader, H., and Post, R. L., 1971, Acetyl phosphate as a substitute for ATP in (Na’ + K+)-dependent ATPase, Biochim. Biophys. Acta 241: 57–67.

    PubMed  CAS  Google Scholar 

  • Bonting, S. L., and Caravaggio, L. L., 1963, Studies on Na: K activated ATPase. V. Correlation of enzyme activity with cation flux in six tissues, Arch. Biochem. Biophys. 101: 37–46.

    CAS  Google Scholar 

  • Bonting, S. L., Simon, K. A., and Hawkins, N. M., 1961, Studies on sodium-potassium-activated adenosine triphosphatase. I. Quantitative distribution in several tissues of the cat, Arch. Biochem. Biophys. 95: 416–423.

    PubMed  CAS  Google Scholar 

  • Bonting, S. L., Schuurmans Stekhoven, F. M. A. H., Swarts, H. G. P., and de Pont, J. J. H. H. M., 1979, The low-energy phosphorylated intermediate of Na,K-ATPase, in: Na +,K + -ATPase: Structure and Kinetics ( J. C. Skou and J. G. Nsrby, eds.), Academic Press, London, pp. 317–330.

    Google Scholar 

  • Brinley, F. J., and Mullins, L. J., 1968, Sodium fluxes in internally dialyzed squid axons, J. Gen. Physiol. 52: 181–211.

    PubMed  CAS  Google Scholar 

  • Brotherus, J. R., Griffith, O. H., Brotherus, M. O., Jost, P. C., and Silvius, J. R., 1981a, Lipid—protein multiple binding equilibria in membranes, Biochemistry 20: 5261–5267.

    PubMed  CAS  Google Scholar 

  • Brotherus, J. R., Moller, J. V., and Jorgensen, P. L., 1981b, Soluble and active renal Na,K-ATPase with maximum protein molecular mass 170,000 ± 9000 Daltons; formation of larger units by secondary aggregation, Biochem. Biophys. Res. Commun. 100: 146–154.

    PubMed  CAS  Google Scholar 

  • Brunner, J., Senn, H., and Richards, F. M., 1980, 3-Trifluoromethyl-3-phenyldiazirine. A new carbene generating group for photolabeling reagents, J. Biol. Chem. 255:3313–3318.

    Google Scholar 

  • Caldwell, P. C., and Keynes, R. D., 1957, The utilization of phosphate bond energy for sodium extrusion from giant axons, J. Physiol. 137: 12 P.

    PubMed  CAS  Google Scholar 

  • Caldwell, P. C., and Keynes, R. D., 1959, The effect of ouabain on the efflux of sodium from a squid axon, J. Physiol. 148: 8–9 P.

    Google Scholar 

  • Caldwell, P. C., Hodgkin, A. L., Keynes, R. D., and Shaw, T. I., 1960, The effects of injecting “energy-rich” phosphate compounds on the active transport of ions in the giant axons of Loligo, J. Physiol. 152: 561–590.

    PubMed  CAS  Google Scholar 

  • Cantley, L. C., 1981, Structure and mechanism of the (Nat,K+)-ATPase, Curr. Top. Bioenerg. 11: 201–237.

    CAS  Google Scholar 

  • Cantley, L. C., and Aisen, P., 1979, The fate of cytoplasmic vanadium. Implications on (Na,K)-ATPase inhibition, J. Biol. Chem. 254: 1781–1784.

    PubMed  CAS  Google Scholar 

  • Cantley, L. C., Josephson, L., Warner, R., Yanagisawa, M., Lechene, C., and Guidotti, G., 1977, Vanadate is a potent (Na,K)-ATPase inhibitor found in ATP derived from muscle, J. Biol. Chem. 252: 7421–7423.

    PubMed  CAS  Google Scholar 

  • Cantley, L. C., Cantley, L. G., and Josephson, L., 1978a, A characterization of vanadate interactions with the (Na,K)-ATPase. Mechanistic and regulatory implications, J. Biol. Chem. 253: 7361–7368.

    PubMed  CAS  Google Scholar 

  • Cantley, L. C., Gelles, J., and Josephson, L., 1978b, Reaction of (Na-K)-ATPase with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole: Evidence for an essential tyrosine at the active site, Biochemistry 17: 418–425.

    PubMed  CAS  Google Scholar 

  • Cantley, L. C., Resh, M., and Guidotti, G., 1978c, Vanadate inhibits the red cell (Na+,K+)ATPase from the cytoplasmic side, Nature 272: 552–554.

    PubMed  CAS  Google Scholar 

  • Carilli, C. T., Farley, R. A., Perlman, D. M., and Cantley, L. C., 1982, The active site structure of Nat -and K+-stimulated ATPase. Location of a specific fluorescein isothiocyanate reactive site, J. Biol. Chem. 257: 5601–5606.

    PubMed  CAS  Google Scholar 

  • Castro, J., and Farley, R. A., 1979, Proteolytic fragmentation of the catalytic subunit of the sodium and potassium adenosine triphosphatase. Alignment of tryptic and chymotryptic fragments and location of sites labelled with ATP and iodoacetate, J. Biol. Chem. 254: 2221–2228.

    PubMed  CAS  Google Scholar 

  • Cavieres, J. D., 1980, Extracellular sodium stimulates ATP—ADP exchange by the sodium pump, J. Physiol. 308: 57 P.

    Google Scholar 

  • Cavieres, J. D., 1983, Ouabain-sensitive ATP—ADP exchange and Na-ATPase of resealed red cell ghosts, Curr. Top. Membr. Trans., 19: 677–681.

    CAS  Google Scholar 

  • Cavieres, J. D., and Ellory, J. C., 1975, Allosteric inhibition of the sodium pump by external sodium, Nature 255: 338–340.

    PubMed  CAS  Google Scholar 

  • Cavieres, J. D., and Ellory, J. C., 1982, The target size for ATP—ADP exchange and Na-ATPase activities of a purified Na,K-ATPase preparation, J. Physiol. 332: 120 P.

    Google Scholar 

  • Cavieres, J. D., and Glynn, I. M., 1979, Sodium—sodium exchange through the sodium pump: The roles of ATP and ADP, J. Physiol. 297: 637–645.

    PubMed  CAS  Google Scholar 

  • Chipperfield, A. R., 1983, Stimulation and inhibition by plasma of ouabain-sensitive sodium efflux in human red blood cells Curr. Top. Membr. Trans. 19: 1013–1016.

    CAS  Google Scholar 

  • Chipperfield, A. R., and Whittam, R., 1976, The connexion between the ion-binding sites of the sodium pump, J. Physiol. 260: 371–385.

    PubMed  CAS  Google Scholar 

  • Churchill, L., Peterson, G. L., and Hokin, L. E., 1979, The large subunit of (sodium + potassium)-activated adenosine triphosphatase from the electroplax of Electrophorus electricus is a glycoprotein, Biochem. Biophys. Res. Commun. 90: 488–490.

    PubMed  CAS  Google Scholar 

  • Clarkson, E. M., and Maizels, M., 1952, Distribution of phosphatases in human erythrocytes, J. Physiol. 116: 112–128.

    PubMed  CAS  Google Scholar 

  • Cleland, W. W., 1970, Steady-state kinetics, in: The Enzymes, Vol. 2 ( P. D. Boyer, ed.), Academic Press, New York, pp. 1–65.

    Google Scholar 

  • Cohn, W. E., and Cohn, E. T., 1939, Permeability of red corpuscles of the dog to sodium ion, Proc. Soc. Exp. Biol. Med. 41: 445–449.

    CAS  Google Scholar 

  • Collins, J. H., Forbush, B., Lane, L. K., Ling, E., Schwarz, A., and Zot, A., 1982, Purification and characterization of an (Na’ + K)-ATPase proteolipid labeled with a photoaffinity derivative of ouabain, Biochim. Biophys. Acta 686: 7–12.

    PubMed  CAS  Google Scholar 

  • Craig, W. S., and Kyte, J., 1980, Stoichiometry and molecular weight of the minimum asymmetric unit of canine renal sodium and potassium ion-activated adenosine triphosphatase, J. Biol. Chem. 255: 6262–6269.

    PubMed  CAS  Google Scholar 

  • Czerwinski, A., Gitelman, H. J., and Welt, L. G., 1967, A new member of the ATPase family, Am. J. Physiol. 213: 786–792.

    PubMed  CAS  Google Scholar 

  • Dahl, J. L., and Hokin, L. E., 1974, The sodium-potassium adenosinetriphosphatase, Annu. Rev. Biochem. 43: 327–356.

    PubMed  CAS  Google Scholar 

  • Dahms, A. S., and Boyer, P. D., 1973, Occurrence and characteristics of 180 exchange reactions catalyzed by sodium-and potassium-dependent adenosine triphosphatases, J. Biol. Chem. 248: 3155–3162.

    PubMed  CAS  Google Scholar 

  • Dahms, A. S., and Miara, J. E., 1983, 31P(18O)-NMR kinetic analysis of the oxygen-18 exchange reaction between inorganic phosphate and water catalyzed by the (Na’,K“)-ATPase, Curr. Top. Membr. Trans. 19:371–375.

    Google Scholar 

  • Dahms, A. S., Kanazawa, T., and Boyer, P. D., 1973, Source of the oxygen in the C-O-P linkage of the acyl phosphate in transport adenosine triphosphatases, J. Biol. Chem. 248: 6592–6595.

    PubMed  CAS  Google Scholar 

  • Danowski, T. S., 1941, The transfer of potassium across the human blood cell membrane, J. Biol. Chem. 139: 693–705.

    CAS  Google Scholar 

  • Dean, R. B., 1941, Theories of electrolyte equilibrium in muscle, Biol. Symp. 3: 331–348.

    CAS  Google Scholar 

  • Degani, C., Dahms, A. S., and Boyer, P. D., 1974, Characterization of acyl phosphate in transport ATPases by a borohydride reduction method, Ann. N. Y. Acad. Sci. 242: 77–79.

    PubMed  CAS  Google Scholar 

  • Deguchi, N., Jargensen, P. L., and Maunsbach, A. B., 1977, Ultrastructure of the sodium parison of thin sectioning, negative staining and freeze-fracture of purified, membrane-bound (Na’,K+)- ATPase, J. Cell Biol. 75: 619–634.

    PubMed  CAS  Google Scholar 

  • De Pont, J. J. H. H. M., Schoot, B. M., Van Prooijen-Van-Eeden, A., and Bonting, S. L., 1977, An essential arginine residue in the ATP-binding centre of (Na’ + K’)-ATPase, Biochim. Biophys. Acta 482: 213–227.

    PubMed  Google Scholar 

  • De Weer, P., 1970, Effects of intracellular 5’ADP and orthophosphate on the sensitivity of sodium efflux from squid axon to external sodium and potassium, J. Gen. Physiol. 56: 583–620.

    PubMed  Google Scholar 

  • De Weer, P., Kennedy, B. G., and Abercrombie, R. F., 1979, Relationship between the Na: K exchanging and Na: Na exchanging modes of operation of the sodium pump, in: Na,K-ATPase: Structure and Kinetics (J. C. Skou and J. G. N$rby, eds.), Academic Press, London, pp. 503–515.

    Google Scholar 

  • De Weer, P., Breitwieser, G. E., Kennedy, B. G., and Smith, H. G., 1983, ADP—ATP exchange in internally dialysed squid giant axons, Curr. Top. Membr. Trans. 19: 665–669.

    Google Scholar 

  • Dissing, S., and Hoffman, J. F., 1983, Anion-coupled Na efflux mediated by the Na: K pump in human red blood cells, Curr. Top. Membr. Trans. 19: 693–695.

    Google Scholar 

  • Dixon, J. F., and Hokin, L. E., 1974, Studies in the characterization of the sodium—potassium adenosine triphosphatase. Purification and properties of the enzyme from the electric organ of Electrophorus electricus, Arch. Biochem. 163: 749–758.

    PubMed  CAS  Google Scholar 

  • Dixon, J. F., and Hokin, L. E., 1978, A simple procedure for the preparation of highly purified (sodium + potassium) adenosine triphosphatase from the rectal salt gland of Squalus acanthias and the electric organ of Electrophorus electricus, Anal. Biochem. 86: 378–385.

    PubMed  CAS  Google Scholar 

  • Drapeau, P., and Blostein, R., 1980, Interactions of K+ with (Na,K)-ATPase: Orientation of K+-phosphatase sites studied with inside-out red cell membrane vesicles, J. Biol. Chem. 255: 7827–7834.

    PubMed  CAS  Google Scholar 

  • Dudding, W. F., and Winter, C. G., 1971, On the reaction sequence of the K’-dependent acetyl phosphatase activity of the Na+ pump, Biochim. Biophys. Acta 241: 650–660.

    PubMed  CAS  Google Scholar 

  • Dunham, E. T., and Glynn, I. M., 1961, Adenosine triphosphatase activity and the active movements of alkali metal ions, J. Physiol. 156: 274–293.

    PubMed  CAS  Google Scholar 

  • Eisner, D. A., and Richards, D. E., 1981, The interaction of potassium ions and ATP on the sodium pump of resealed red cell ghosts, J. Physiol. 319: 403–418.

    PubMed  CAS  Google Scholar 

  • Eisner, D. A., and Richards, D. E., 1982, Inhibition of the sodium pump by inorganic phosphate in resealed red cell ghosts, J. Physiol. 326: 1–10.

    PubMed  CAS  Google Scholar 

  • Eisner, D. A., and Richards, D. E., 1983, Stimulation and inhibition by ATP and orthophosphate of the potassium—potassium exchange in resealed red cell ghosts, J. Physiol. 335: 495–506.

    PubMed  CAS  Google Scholar 

  • Ellory, J. C., Green, J. R., Jarvis, S. M., and Young, J. D., 1979, Measurement of the apparent molecular volume of membrane-bound transport systems by radiation inactivation, J. Physiol. 295: 10–11 P.

    Google Scholar 

  • Erdmann, E., and Schoner, W., 1973, Ouabain-receptor interactions in (Na+ + K*)-ATPase preparations from different tissues and species. Determination of kinetic constants and dissociation constants, Biochim. Biophys. Acta 307: 386–398.

    PubMed  CAS  Google Scholar 

  • Erdmann, E., and Schoner, W., 1974, Ouabain-receptor interactions in (Na+ + K*)-ATPase preparations. IV. The molecular structure of different cardioactive steroids and other substances and their affinity to the glycoside receptor, Naunyn-Schmiedebergs Arch. Pharmacol. 283: 335–356.

    PubMed  CAS  Google Scholar 

  • Esmann, M., 1980, Concanavalin A-Sepharose purification of soluble Na,K-ATPase from rectal glands of the spiny dogfish, Anal. Biochem. 108: 83–85.

    PubMed  CAS  Google Scholar 

  • Esmann, M., and Klodos, I., 1983, Sulphydryl groups of Na,K-ATPase: Effects of N-ethyl-maleimide on phosphorylation from ATP in the presence of Na+ + Mgt+, Curr. Top. Membr. Trans. 19: 349–352.

    CAS  Google Scholar 

  • Esmann, M., Skou, J. C., and Christiansen, C., 1979, Solubilization and molecular weight determination of Na,K-ATPase from rectal glands of Squalus Acanthias, Biochim. Biophys. Acta 567: 410–420.

    PubMed  CAS  Google Scholar 

  • Esmann, M., Christiansen, C., Karlsson, K-A., Hansson, G. C., and Skou, J. C., 1980, Hydrodynamic properties of solubilized (Na+ + K+)-ATPase from rectal glands of Squalus acanthias, Biochim. Biophys. Acta 603: 1–12.

    PubMed  CAS  Google Scholar 

  • Fahn, S., Hurley, M. R., Koval, G. J., and Albers, R. W., 1966a, Sodium—potassium-activated adenosine triphosphatase of Electrophorus electric organ. II. Effects of N-ethylmaleimide and other sulfhydryl reagents, J. Biol. Chem. 241: 1890–1895.

    PubMed  CAS  Google Scholar 

  • Fahn, S., Koval, G. J., and Albers, R. W., 1966b, Sodium—potassium-activated adenosine triphosphatase of Electrophorus electric organ. I. An associated sodium-activated transphosphorylation, J. Biol. Chem. 241: 1882–1889.

    PubMed  CAS  Google Scholar 

  • Fahn, S., Koval, G. J., and Albers, R. W., 1966b, Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. I. An associated sodium-activated transphosphorylation, J. Biol. Chem. 241:1882–1889.

    Google Scholar 

  • Fenn, W. O., and Cobb, D. M., 1936, Electrolyte changes in muscle during activity, Am. J. Physiol. 115: 345–356.

    CAS  Google Scholar 

  • Fishman, M. C., 1979, Endogenous digitalis-like activity in mammalian brain, Proc. Natl. Acad. Sci. USA 76: 4661–4663.

    PubMed  CAS  Google Scholar 

  • Flatman, P. W., and Lew, V. L., 1981, The magnesium dependence of sodium-pump-mediated sodium-potassium and sodium-sodium exchange in intact human red cells, J. Physiol. 315: 421–446.

    PubMed  CAS  Google Scholar 

  • Forbush, B., 1982, Characterization of right-side-out membrane vesicles rich in (Na,K)-ATPase and isolated from dog kidney outer medulla, J. Biol. Chem. 257: 12678–12684.

    PubMed  CAS  Google Scholar 

  • Forbush, B., and Hoffman, J. F., 1979, Evidence that ouabain binds to the same large polypeptide chain of dimeric Na,K-ATPase that is phosphorylated by P,, Biochemistry 18: 2308–2315.

    PubMed  CAS  Google Scholar 

  • Forbush, B., Kaplan, J. H., and Hoffman, J. F., 1978, Characterization of a new photoaffinity derivative of ouabain: labeling of the large polypeptide and of a proteolipid component of the Na,K-ATPase, Biochemistry 17: 3667–3676.

    PubMed  CAS  Google Scholar 

  • Forgac, M., and Chin, G., 1981, K -independent active transport of Na-by the (Na’ + K)-stimulated adenosine triphosphatase, J. Biol. Chem. 256: 3645–3646.

    PubMed  CAS  Google Scholar 

  • Fortes, P. A. G., Moczydlowski, E. G., Yagi, A., and Lee, J. A., 1981, Na, K-ATPase structure and mechanism studied with site-directed fluorescent probes, Proc. Vllthlnternational Biophysics Congress, p. 66. IUPAB.

    Google Scholar 

  • Foster, D., and Ahmed, K., 1976, Na’-dependent phosphorylation of rat brain (Na’ + K+)-ATPase. Possible non-equivalent activation sites for Na-, Biochim. Biophys. Acta 429: 258–273.

    PubMed  CAS  Google Scholar 

  • Freytag, J. W., and Reynolds, J. A., 1981, Polypeptide molecular weights of the (Na’,K’)-ATPase from porcine kidney medulla, Biochemistry 20: 7211–7214.

    PubMed  CAS  Google Scholar 

  • Froehlich, J. P., Albers, R. W., Koval, G. J., Goebel, R., and Berman, M., 1976, Evidence for a new intermediate state in the mechanism of (Na’ + K+)-adenosine triphosphatase, J. Biol. Chem. 251: 2186–2188.

    PubMed  CAS  Google Scholar 

  • Froehlich, J. P., Hobbs, A. S., and Albers, R. W., 1983, Evidence for parallel pathways of phosphoenzyme formation in the mechanism of ATP hydrolysis by Electrophorus (Na,K)-ATPase, Curr. Top. Membr. Trans. 19: 513–535.

    CAS  Google Scholar 

  • Fujita, M., Ohta, H., Kawai, K., Matsui, H., and Nakao, M., 1972, Differential isolation of microvillous and basolateral plasma membranes from intestinal mucosa: Mutually exclusive distribution of digestive enzymes and ouabain-sensitive ATPase, Biochim. Biophys. Acta 274: 336–347.

    PubMed  CAS  Google Scholar 

  • Fukushima, Y., and Nakao, M., 1980, Changes in affinity of Nat-and K+-transport ATPase for divalent cations during its reaction sequence, J. Biol. Chem. 255: 7813–7819.

    PubMed  CAS  Google Scholar 

  • Fukushima, Y., and Nakao, M., 1981, Transient state in the phosphorylation of sodium-and potassium-transport adenosine triphosphatase by adenosine triphosphate, J. Biol. Chem. 256: 9136–9143.

    PubMed  CAS  Google Scholar 

  • Fukushima, Y., and Post, R. L., 1978, Binding of divalent cation to phosphoenzyme of sodium-and potassium-transport adenosine triphosphatase, J. Biol. Chem. 253: 6853–6862.

    PubMed  CAS  Google Scholar 

  • Fukushima, Y., and Tonomura, Y., 1973, Two kinds of high energy phosphorylated intermediate, with and without bound ADP, in the reaction of Na’-K’-dependent ATPase, J. Biochem. (Tokyo) 74: 135–142.

    CAS  Google Scholar 

  • Fukushima, Y., and Tonomura, Y., 1975, The pre-steady state of Na’-K’-dependent ATPase after addition of Na’ ions. Transition of the phosphorylated intermediate from an ADP-sensitive to an ADP-insensitive form, J. Biochem. Tokyo 78: 749–755.

    PubMed  CAS  Google Scholar 

  • Gache, C., Rossi, B., and Lazdunski, M., 1976, (Na,K)-activated adenosine triphosphatase of axonal membranes, cooperativity and control. Steady-state analysis, Eur. J. Biochem. 65:293–306.

    Google Scholar 

  • Garay, R. P., and Garrahan, P. J., 1973, The interaction of sodium and potassium with the sodium pump in red cells, J. Physiol. 231: 297–325.

    PubMed  CAS  Google Scholar 

  • Garay, R. P., and Garrahan, P. J., 1975, The interaction of adenosine triphosphate and inorganic phosphate with the sodium pump in red cells, J. Physiol. 249: 51–67.

    PubMed  CAS  Google Scholar 

  • Gardos, G., 1954, Akkumulation der Kaliumionen durch menschliche Blutkörperchen, Acta Physiol. Hung. 6: 191–199.

    PubMed  CAS  Google Scholar 

  • Garrahan, P. J., and Garay, R. P., 1976, The distinction between simultaneous and sequential models for sodium and potassium transport, Curr. Top. Membr. Trans. 8: 29–97.

    CAS  Google Scholar 

  • Garrahan, P. J., and Glynn, I. M., 1967a, The behavior of the sodium pump in red cells in the absence of external potassium, J. Physiol. 192: 159–174.

    PubMed  CAS  Google Scholar 

  • Garrahan, P. J., and Glynn, I. M., 1967b, The sensitivity of the sodium pump to external sodium, J. Physiol. 192: 175–188.

    PubMed  CAS  Google Scholar 

  • Garrahan, P.J., and Glynn, I. M., 1967c, Factors affecting the relative magnitudes of the sodium: potassium and sodium: sodium exchanges catalysed by the sodium pump, J. Physiol. 192: 189–216.

    PubMed  CAS  Google Scholar 

  • Garrahan, P. J., and Glynn, I. M., 1967d, The stoichiometry of the sodium pump, J. Physiol. 192: 217–235.

    PubMed  CAS  Google Scholar 

  • Garrahan, P. J., and Glynn, I. M., 1967e, The incorporation of inorganic phosphate into adenosine triphosphate by reversal of the sodium pump, J. Physiol. 192: 237–257.

    PubMed  CAS  Google Scholar 

  • Garrahan, P. J., and Rega, A. F., 1972, Potassium activated phosphatase from human red blood cells. The effects of p-nitrophenylphosphate on cation fluxes, J. Physiol. 233: 595–617.

    Google Scholar 

  • Garrahan, P. J., Pouchan, M. I., and Rega, A. F., 1970, Potassium activated phosphatase from human red blood cells. The effects of adenosine triphosphate, J. Membr. Biol. 3: 26–42.

    CAS  Google Scholar 

  • Garrahan, P. J., Horenstein, A. H., and Rega, A. F., 1979, The interaction of ligands with the Na,KATPase during Na-ATPase activity, in: Na,K-ATPase: Structure and Kinetics (J. C. Skou and J. G. Nrby, eds.), Academic Press, London, pp. 261–274.

    Google Scholar 

  • Garrahan, P. J., Rossi, R. C., and Rega, A. F., 1982, The interaction of IC-,Na’, Mg’, and ATP with the (Na,K)ATPase, Ann. N. Y. Acad. Sci., 402: 239–251.

    PubMed  CAS  Google Scholar 

  • Giotta, G. J., 1975, Native (Na’ + K)-dependent adenosine triphosphatase has two trypsin-sensitive sites, J. Biol. Chem. 250: 5159–5164.

    PubMed  CAS  Google Scholar 

  • Giotta, G. J., 1976, Quaternary structure of (Na’ + K’)-dependent adenosine triphosphatase, J. Biol. Chem. 251: 1247–1252.

    PubMed  CAS  Google Scholar 

  • Gitler, C., and Bercovici, T., 1980, Use of lipophilic photoactivatable reagents to identify the lipid-embedded domain of membrane proteins, Ann. N. Y. Acad. Sci. 346: 199–211.

    PubMed  CAS  Google Scholar 

  • Glynn, I. M., 1956, Sodium and potassium movements in human red cells, J. Physiol. 134: 278–310.

    PubMed  CAS  Google Scholar 

  • Glynn, I. M., 1957, The action of cardiac glycosides on sodium and potassium movements in human red cells, J. Physiol. 136: 148–173.

    PubMed  CAS  Google Scholar 

  • Glynn, I. M., 1962, Activation of adenosinetriphosphatase activity in a cell membrane by external potassium and internal sodium, J. Physiol. 160: 18–19 P.

    Google Scholar 

  • Glynn, I. M., 1963, “Transport adenosinetriphosphatase” in electric organ. The relation between ion transport and oxidative phosphorylation, J. Physiol. 169:452–465.

    Google Scholar 

  • Glynn, I. M., 1969, The effects of cardiac glycosides on metabolism and ion fluxes, in: Digitalis ( C. Fisch and B. Surawicz, eds.), Grune & Stratton, New York, pp. 30–42.

    Google Scholar 

  • Glynn, I. M., 1982, Occluded-ion forms of the Na,K-ATPase, Ann. N. Y. Acad. Sci. 402: 287–288.

    PubMed  CAS  Google Scholar 

  • Glynn, I. M., 1984, The electrogenic sodium pump, in: Electrogenic Transport: Fundamental Principles and Physiological Implications ( M. P. Blaustein and M. Lieberman, eds.), Raven Press, New York, pp. 33–48.

    Google Scholar 

  • Glynn, I. M., and Hoffman, J. F., 1971, Nucleotide requirements for sodium—sodium exchange catalysed by the sodium pump in human red cells, J. Physiol. 218: 239–256.

    PubMed  CAS  Google Scholar 

  • Glynn, I. M., and Karlish, S. J. D., 1975, The sodium pump, Annu. Rev. Physiol. 37: 13–55.

    PubMed  CAS  Google Scholar 

  • Glynn, I. M., and Karlish, S. J. D., 1976, ATP hydrolysis associated with an uncoupled sodium flux through the sodium pump: Evidence for allosteric effects of intracellular ATP and extracellular sodium, J. Physiol. 256: 465–496.

    PubMed  CAS  Google Scholar 

  • Glynn, I. M., and Karlish, S. J. D., 1982, Conformational changes associated with K’ transport by the Na’/K’-ATPase, in: Membranes and Transport, Vol. I ( A. N. Martinosi, ed.), Plenum Press, New York, pp. 529–536.

    Google Scholar 

  • Glynn, I. M., and Lew, V. L., 1970, Synthesis of adenosine triphosphate at the expense of downhill cation movements in intact human red cells, J. Physiol. 207: 393–402.

    PubMed  CAS  Google Scholar 

  • Glynn, I. M., and Richards, D. E., 1982, Occlusion of rubidium ions by the sodium-potassium pump: Its implications for the mechanism of potassium transport, J. Physiol. 330: 17–43.

    PubMed  CAS  Google Scholar 

  • Glynn, I. M., and Richards, D. E., 1983, The existence and role of occluded-ion forms of Na,K-ATPase, Curr. Top. Membr. Trans. 19: 625–638.

    CAS  Google Scholar 

  • Glynn, I. M., and Rink, T. J., 1982, Hypertension and inhibition of the sodium pump: A strong link but in which chain? Nature 300: 576–577.

    PubMed  CAS  Google Scholar 

  • Glynn, I. M., Lew, V. L., and Lüthi, V., 1970, Reversal of the potassium entry mechanism in red cells, with and without reversal of the entire pump cycle, J. Physiol. 207: 371–391.

    PubMed  CAS  Google Scholar 

  • Glynn, I. M., Hoffman, J. F., and Lew, V. L., 1971, Some “partial reactions” of the sodium pump, Phil. Trans. R. Soc.

    Google Scholar 

  • Glynn, I. M., Karlish, S. J. D., Cavieres, J. D., Ellory, J. C., Lew, V. L., and Jsrgensen, P. L., 1974, The effects of an antiserum to Na-,K+-ATPase on the ion transporting and hydrolytic activities of the enzyme, Ann. N. Y. Acad. Sci. 242: 357–371.

    PubMed  CAS  Google Scholar 

  • Glynn, I. M., Karlish, S. J. D., and Yates, D. W., 1979, The use of formycin nucleotides to investigate the mechanism of Na,K-ATPase, in: Na,K-ATPase: Structure and Kinetics ( J. C. Skou and J. G. Norby, eds.), Academic Press, London, pp. 101–113.

    Google Scholar 

  • Glynn, I. M., Hara, Y., and Richards, D. E., 1983a, Trapping of sodium ions by a phosphorylated form of the sodium-potassium pump (Na,K-ATPase), J. Physiol., 339: 56–57 P.

    Google Scholar 

  • Glynn, I. M., Howland, J. L., and Richards, D. E., 1983b, Orthophosphate plus magnesium causes the rapid release of only 50% of rubidium ions occluded in the unphosphorylated Na, K-ATPase, J. Physiol. 343: 94 P.

    Google Scholar 

  • Glynn, I. M., Hara, Y., and Richards, D. E., 1984, The occlusion of sodium ions within the mammalian sodium-potassium pump: its role in sodium transport. J. Physiol. 351: 531–547

    PubMed  CAS  Google Scholar 

  • Godfraind, T., and Hernandez, G. C., 1981, Properties of a digitalis-like factor extracted from guinea-pig brain, Arch. Int. Pharmacodvn. Ther. 250: 316–317.

    CAS  Google Scholar 

  • Goldin, S. M., 1977, Active transport of sodium and potassium ions by the sodium and potassium ion-activated adenosine triphosphatase from renal medulla. Reconstitution of the purified enzyme into a well-defined in vitro transport system, J. Biol. Chem. 252: 5630–5642.

    PubMed  CAS  Google Scholar 

  • Gonzalez, E., and Zambrano, F., 1983, Possible role of sulphatide in K + -activated phosphatase activity, Biochim. Biophys. Acta 728: 66–72.

    PubMed  CAS  Google Scholar 

  • Grantham, J. J., and Glynn, I. M., 1979, Renal Na,K-ATPase: Determinants of inhibition by vanadium, Am. J. Physiol. 236 (6): F530 - F535.

    PubMed  CAS  Google Scholar 

  • Grisham, C. M., 1979, Characterization of essential arginine residues in sheep kidney (Na+ + K+)ATPase, Biochem. Biophys. Res. Commun. 88: 229–236.

    PubMed  CAS  Google Scholar 

  • Grisham, C. M., 1982, Ion-transporting ATPases. Characterizing structure and function with paramagnetic probes, in: Membranes and Transport, Vol. 1 ( A. N. Martonosi, ed.), Plenum, New York, pp. 585–592.

    Google Scholar 

  • Grisham, C. M., and Hutton, W., 1978, Lithium-7 NMR as a probe of monovalent cation sites at the active (Na+ + K+)-ATPase from kidney, Biochem. Biophys. Res. Commun. 81: 1406–1411.

    PubMed  CAS  Google Scholar 

  • Grosse, R., Eckert, K., Malur, J., and Repke, K. R. H., 1978, Analysis of function-related interactions of ATP, sodium and potassium ions with Na+- and K+-transporting ATPase studied with a thiol reagent as tool, Acta Biol. Med. Ger. 37: 83–96.

    PubMed  CAS  Google Scholar 

  • Grosse, R., Rapoport, T., Malur, J., Fischer, J., and Repke, K. R. H., 1979, Mathematical modelling of ATP, K and Na’ interactions with (Na“ + K+)-ATPase occurring under equilibrium conditions, Biochim. Biophys. Acta 550: 500–514.

    PubMed  CAS  Google Scholar 

  • Gruber, K. A., Whitaker, J.M., and Buckalew, V. M., 1983, Immunochemical approaches to the isolation of an endogenous digoxin-like factor. Curr. Top. Membr. Trans. 19: 917–921.

    CAS  Google Scholar 

  • Haase, W., and Koepsell, H., 1979, Substructure of membrane-bound Na’-K’-ATPase protein, Pflügers Arch. 381: 127–135.

    PubMed  CAS  Google Scholar 

  • Hall, C., and Ruoho, A., 1980, Ouabain-binding-site photoaffinity probes that label both subunits of Nat,K+-ATPase, Proc. Natl. Acad. Sci. USA 77: 4529–4533.

    PubMed  CAS  Google Scholar 

  • Hamlyn, J. M., Ringel, R., Schaeffer, J., Levinson, P. D., Hamilton, B. P., Kowarski, A. A., and Blaustein, M. P., 1982, A circulating inhibitor of (Nat + K’)ATPase associated with essential hypertension, Nature 300: 650–652.

    PubMed  CAS  Google Scholar 

  • Hansen, O., 1971, The relationship between g-strophanthin-binding capacity and ATPase activity in plasma membrane fragments from ox brain, Biochim. Biophys. Acta 233: 122–132.

    PubMed  CAS  Google Scholar 

  • Hansen, O., 1976, Nonuniform population of g-strophanthin-binding sites of (Na’ + K’)-activated ATPase. Apparent conversion to uniformity by K’, Biochim. Biophys. Acta 433: 383–392.

    CAS  Google Scholar 

  • Hansen, O., Jensen, J., and Norby, J. G., 1971, Mutual exclusion of ATP, ADP, and g-strophanthin binding to NaK-ATPase, Nature 234: 122–124.

    CAS  Google Scholar 

  • Hansen, O., Jensen, J., and Ottolenghi, P., 1979, Na,K-ATPase: The uncoupling of its ATPase and pnitrophenyl phosphatase activities by thimerosal, in: Na,K-ATPase: Structure and Kinetics ( J. C. Skou and J. G. Norby, eds.), Academic Press, London, pp. 217–226.

    Google Scholar 

  • Hansson, C. G., Karlsson, K-A., and Samuelsson, B. E., 1978, The identification of sulfatides in human erythrocyte membrane and their relation to sodium-potassium dependent adenosine triphosphatase, J. Biochem. (Tokyo) 83: 813–819.

    CAS  Google Scholar 

  • Hara, Y., and Nakao, M., 1979, Detection of sodium binding to Na’,K“-ATPase with a sodium sensitive electrode, in: Cation Flux across Biomembranes ( Y. Mukohata and L. Packer, eds.), Academic Press, New York, pp. 21–28.

    Google Scholar 

  • Hara, Y., and Nakao, M., 1981, Sodium ion discharge from pig kidney Nat,K’-ATPase. Nat-dependency of the E1P E2P equilibrium in the absence of KC1, J. Biochem. (Tokyo) 90: 923–931.

    CAS  Google Scholar 

  • Hara, S., Hara, Y., Nakao, T., and Nakao, M., 1981, Ligand-dependent reactivity of (Na’ + K+)-ATPase with showdomycin, Biochim. Biophys. Acta 644: 53–61.

    PubMed  CAS  Google Scholar 

  • Harris, J. E., 1941, The influence of the metabolism of human erythrocytes on their potassium content, J. Biol. Chem. 141: 579–595.

    CAS  Google Scholar 

  • Harris, E. J., and Maizels, M., 1951, The permeability of human red cells to sodium, J. Physiol. 113: 506–524.

    PubMed  CAS  Google Scholar 

  • Hart, W. M., and Titus, E. O., 1973a, Isolation of a protein component of sodium-potassium transport adenosine triphosphatase containing ligand-protected sulfhydryl groups, J. Biol. Chem. 248: 1365–1371.

    PubMed  CAS  Google Scholar 

  • Hart, W. M., and Titus, E. O., 1973b, Sulfhydryl groups of sodium–potassium transport adenosine triphosphatase. Protection by physiological ligands and exposure by phosphorylation, J. Biol. Chem. 248: 4674–4681.

    PubMed  CAS  Google Scholar 

  • Hastings, D. F., and Reynolds, J. A., 1979a, Non-ionic detergent solubilized Na,K-ATPase from shark rectal glands-molecular weight and peptide stoichiometry of the active complex, in: Na,K-ATPase: Structure and Kinetics (J. C. Skou and J. G. N$rby, eds.), Academic Press, London, pp. 15–20.

    Google Scholar 

  • Hastings, D. F., and Reynolds, J. A., 1979b, Molecular weight of (Nat,K’)ATPase from shark rectal gland, Biochemistry 18: 817–821.

    PubMed  CAS  Google Scholar 

  • Hastings, D., and Skou, J. C., 1980, Potassium binding to the (Na+ + K+)-ATPase, Biochim. Biophys. Acta 601: 380–385.

    PubMed  CAS  Google Scholar 

  • Haupert, G. T., 1983, Endogenous glycoside-like substances, Curr. Top. Membr. Transport 19:843–855. Haupert, G. T., and Sancho, J. M., 1979, Sodium transport inhibitor from bovine hypothalamus, Proc. Natl. Acad. Sci. USA 76: 4658–4660.

    Google Scholar 

  • Hayashi, Y., Kimimura, M., Homareda, H., and Matsui, H., 1977, Purification and characteristics of (Nat,K“)-ATPase from canine kidney by zonal centrifugation in sucrose density gradient, Biochim. Biophys. Acta 482: 185–196.

    PubMed  CAS  Google Scholar 

  • Hebert, H., Jorgensen, P. L., Skriver, E., and Maunsbach, A. B., 1982, Crystallization patterns of membrane-bound (Nat + K+)-ATPase, Biochim. Biophys. Acta 689: 571–574.

    PubMed  CAS  Google Scholar 

  • Hegyvary, C., 1975, Covalent labeling of the digitalis-binding component of plasma membranes, Mol. Pharmacol. 11: 588–594.

    PubMed  CAS  Google Scholar 

  • Hegyvary, C., and Jsrgensen, P. L., 1981, Conformational changes of renal sodium plus potassium iontransport adenosine triphosphatase labelled with fluorescein, J. Biol. Chem. 256: 6296–6303.

    PubMed  CAS  Google Scholar 

  • Hegyvary, C., and Post, R. L., 1971, Binding of adenosine triphosphate to sodium and potassium ionstimulated adenosine triphosphatase, J. Biol. Chem. 246: 5234–5240.

    PubMed  CAS  Google Scholar 

  • Heinz, A., Rubinson, K. A., and Grantham, J. J., 1982, The transport and accumulation of oxyvanadium compounds in human erythrocytes in vitro, J. Lab. Clin. Med. 100: 593–612.

    PubMed  CAS  Google Scholar 

  • Henderson, G. R., and Askari, A., 1976, Transport ATPase: Thimerosal inhibits the Na+,K’-dependent ATPase activity without diminishing the Na“ -dependent ATPase activity, Biochem. Biophys. Res. Commun. 69: 499–505.

    PubMed  CAS  Google Scholar 

  • Henderson, G. R., and Askari, A., 1977, Transport ATPase: Further studies on the properties of the thimerosal-treated enzyme, Arch. Biochem. Biophys. 182: 221–226.

    PubMed  CAS  Google Scholar 

  • Henderson, G. R., Huang, W., and Askari, A., 1979, Transport ATPase—the different modes of inhibition of the enzyme by various mercury compounds, Biochem. Pharmacol. 28: 429–433.

    PubMed  CAS  Google Scholar 

  • Heppel, L. A., 1940, The diffusion of radioactive sodium into the muscles of potassium-deprived rats, Am. J. Physiol. 128: 449–454.

    CAS  Google Scholar 

  • Hexum, T., Samson, F. E., and Himes, R. H., 1970, Kinetic studies of (Nat + K + Mg2’)-ATPase, Biochim. Biophys. Acta 212: 322–331.

    PubMed  CAS  Google Scholar 

  • Hilden, S., and Hokin, L. E., 1975, Active potassium transport coupled to active sodium transport in vesicles reconstituted from purified sodium and potassium ion-activated adenosine triphosphatase from the rectal gland of Squalus acanthias, J. Biol. Chem. 250: 6296–6303.

    PubMed  CAS  Google Scholar 

  • Hobbs, A. S., Albers, R. W., and Froehlich, J. P., 1980, Potassium-induced changes in phosphorylation and dephosphorylation of (Na+ + K+)-ATPase observed in the transient state, J. Biol. Chem. 255: 3395–3402.

    PubMed  CAS  Google Scholar 

  • Hobbs, A. S., Froehlich, J. P., and Albers, R. W., 1983, Inhibition by vanadate of the reactions catalyzed by the Na’ plus K’-stimulated ATPase: A transient state kinetic characterization, J. Biol. Chem. 255: 3724–3727.

    Google Scholar 

  • Hodgkin, A. L., and Keynes, R. D., 1955, Active transport of cations in giant axons from Sepia and Loligo, J. Physiol. 128: 28–60.

    PubMed  CAS  Google Scholar 

  • Hoffman, J. F., 1966, The red cell membrane and the transport of sodium and potassium, Am. J. Med. 41: 666–680.

    PubMed  CAS  Google Scholar 

  • Hoffman, P. G., and Tosteson, D. C., 1971, Active sodium and potassium transport in high potassium and low potassium sheep red cells, J. Gen. Physiol. 58: 438–466.

    PubMed  CAS  Google Scholar 

  • Hokin, L. E., 1974, Purification and properties of the (sodium + potassium)-activated adenosine triphosphatase and reconstitution of sodium transport, Ann. N. Y. Acad. Sci. 242: 12–23.

    PubMed  CAS  Google Scholar 

  • Hokin, L. E., Dahl, J. L., Deupree, J. D., Dixon, J. F., Hackney, J. F., and Perdue, J. F., 1973, Studies on the characterization of the sodium—potassium transport adenosine triphosphatase. X. Purification of the enzyme from rectal gland of Squalus acanthias, J. Biol. Chem. 248: 2593–2605.

    PubMed  CAS  Google Scholar 

  • Homareda, H., and Matsui, H., 1982, Interaction of sodium and potassium ions with Na’,K’-ATPase. II. General properties of ouabain-sensitive K’ binding, J. Biochem (Tokyo) 92: 219–231.

    CAS  Google Scholar 

  • Hopkins, B. E., Wagner, H., and Smith, T. W., 1976, Sodium-and potassium-activated adenosine triphosphatase of the nasal salt gland of the duck (Anas platyrhynchos). Purification characterization, and NH2-terminal amino acid sequence of the phosphorylating polypeptide, J. Biol. Chem. 251: 4365–4371.

    PubMed  CAS  Google Scholar 

  • Horowicz, P., Taylor, J. W., and Waggoner, D. M., 1970, Fractionation of sodium efflux in frog sartorius muscles by strophanthidin and removal of external sodium, J. Gen. Physiol. 55: 401–425.

    PubMed  CAS  Google Scholar 

  • Huang, W-H., and Askari, A., 1981, Phosphorylation-dependent cross-linking of the a-subunits in the presence of Ca’ and o-phenanthroline, Biochim. Biophys. Acta 645: 54–58.

    PubMed  CAS  Google Scholar 

  • Inturrisi, C. E., and Titus, E., 1968, Kinetics of oligomycin inhibition of sodium-and-potassium-activated adenosine triphosphatase from beef brain, Mol. Pharmacol. 4: 591–599.

    PubMed  CAS  Google Scholar 

  • Israel, Y., and Titus, E. O., 1967, A comparison of microsomal (Na’ + K’)-ATPase with K’-acetylphosphatase, Biochim. Biophys. Acta 139: 450–459.

    PubMed  CAS  Google Scholar 

  • Jackson, R. L., Verkleij, A. J., Van Zoelen, E. J. J., Lane, L. K., Schwartz, A., and Van Deenen, L. L. M., 1980, Asymmetric incorporation of Na“,K”-ATPase into phospholipid vesicles, Arch. Biochem. Biophys. 200: 269–278.

    PubMed  CAS  Google Scholar 

  • Järnefelt, J., 1962, Properties and possible mechanism of the Na’ and K’ -stimulated microsomal adenosine triphosphatase, Biochim. Biophys. Acta 59: 643–654.

    PubMed  Google Scholar 

  • Jensen, J., and Ottolenghi, P., 1976, Adenosine diphosphate binding to sodium-plus-potassium ion-dependent adenosine triphosphatase. The role of lipid in nucleotide-potassium ion interplay, Biochem. J. 159: 815–817.

    PubMed  CAS  Google Scholar 

  • Jensen, J., and Ottolenghi, P., 1983, Binding of Rb’ and ADP to a potassium-like form of Na,K-ATPase, Curr. Top. Membr. Trans. 19: 223–227.

    CAS  Google Scholar 

  • Jensen, J., Nrby, J. G., and Ottolenghi, P., 1979, Is there a relationship between ATP-binding capacity and enzyme activity in thimerosal-treated Na,K-ATPase? in: Na,K-ATPase: Structure and Kinetics (J.C. Skou and J. G. N?rby, eds.), Academic Press, London, pp. 227–230.

    Google Scholar 

  • Jöbsis, F. F., and Vreman, H. J., 1963, Inhibition of a Na’ and K’ stimulated adenosinetriphosphatase by oligomycin, Biochim. Biophys. Acta 73: 346–348.

    Google Scholar 

  • Johannsson, A., Smith, G. A., and Metcalfe, J. C., 1981, The effect of bilayer thickness on the activity of (Na’ pl K’)-ATPase, Biochim. Biophys. Acta 641: 416–421.

    PubMed  CAS  Google Scholar 

  • J¢rgensen, P. L., 1974a, Purification and characterization of (Na’ + K’)-ATPase. III. Purification from the outer medulla of mammalian kidney after selective removal of membrane components by SDS, Biochim. Biophys. Acta 356: 36–52.

    Google Scholar 

  • Jsensen, P. L., 1974b, Purification and characterization of (Na+ + K+)-ATPase. IV. Estimation of the purity and of the molecular weight and polypeptide content per enzyme unit in preparations from the outer medulla of the rabbit kidney, Biochim. Biophys. Acta 356:53–67.

    Google Scholar 

  • Jsensen, P. L., 1975a, Purification and characterization of (Na’ + K’)-ATPase. V. Conformational changes in the enzyme. Transitions between the Na-form and the K-form studied with tryptic digestion as a tool, Biochim. Biophys. Acta 401: 399–415.

    Google Scholar 

  • Jsgensen, P. L., 1975b, Isolation and characterization of the components of the sodium pump, Q. Rev. Biophys. 7: 239–274.

    Google Scholar 

  • Jorgensen, P. L., 1977, Purification and characterization of (Na’ + K’)-ATPase. VI. Differential tryptic modification of catalytic functions of the purified enzyme in presence of NaCI and KC1, Biochim. Biophys. Acta 466: 97–108.

    PubMed  CAS  Google Scholar 

  • Jorgensen, J. C., 1982, Mechanism of the Na,K+ pump. Protein structure and conformations of the pure (Na+ + K+)-ATPase, Biochim. Biophys. Acta 694: 27–68.

    PubMed  CAS  Google Scholar 

  • Jorgensen, P. L., and Anner, B. M., 1979, Purification and characterization of (Na’ + K+)-ATPase. VIII. Altered Na+: K’ transport ratio in vesicles reconstituted with purified (Na+ + K+)-ATPase that has been selectively modified with trypsin in presence of NaCI, Biochim. Biophys. Acta 555: 485–492.

    PubMed  CAS  Google Scholar 

  • Jorgensen, P. L., and Karlish, S. J. D., 1980, Defective conformational response in a selectively trypsinized (Na+ + K +)-ATPase studied with tryptophan fluorescence, Biochim. Biophys. Acta 597: 305–317.

    PubMed  CAS  Google Scholar 

  • Jorgensen, P. L., and Klodos, I., 1978, Purification and characterization of (Na’ + K+)-ATPase. VII. Tryptic degradation of the Na-form of the enzyme protein resulting in selective modification of dephosphorylation reactions of the (Na“ + K+)-ATPase, Biochim. Biophys. Acta 507: 8–16.

    PubMed  CAS  Google Scholar 

  • Jorgensen, P. L., and Petersen, T., 1982, High-affinity 86Rb-binding and structural changes in the a-subunit of Na’,K“-ATPase as detected by tryptic digestion and fluorescence analysis, Biochim. Biophys. Acta 705: 38–47.

    PubMed  CAS  Google Scholar 

  • Jorgensen, P. L., and Skou, J. C. 1971, Purification and characterization of (Na+ + K+)-ATPase. I. Influence of detergents on the activity of (Na+ + K+)-ATPase in preparations from the outer medulla of rabbit kidney, Biochim. Biophys. Acta 233: 366–380.

    PubMed  CAS  Google Scholar 

  • Jorgensen, P. L., Hansen, O., Glynn, I. M., and Cavieres, J. D., 1973, Antibodies to pig kidney (Na+ + K+)ATPase inhibit the Na+ pump in human red cells provided they have access to the inner surface of the cell membrane, Biochim. Biophys. Acta 291: 795–800.

    PubMed  CAS  Google Scholar 

  • Jorgensen, P. L., Karlish, S. J. D., and Gitler, C., 1982a, Evidence for the organization of the transmembrane segments of (Na,K)-ATPase based on labeling lipid-embedded and surface domains of the a-subunit, J. Biol. Chem. 257: 7435–7442.

    PubMed  CAS  Google Scholar 

  • Jorgensen, P. L., Skriver, E., Hebert, H., and Maunsbach, A. B., 1982b, Structure of the Na,K-pump: Crystallization of pure membrane-bound Na,K-ATPase and identification of functional domains of the a-subunit, Ann. N. Y. Acad. Sci. 402: 207–224.

    PubMed  CAS  Google Scholar 

  • Jorgensen, P. L., Karlish, S. J. D., and Gitler, C.,1983, Organization of the transmembrane segments of Na,K-ATPase. Labeling of lipid embedded and surface domains of the a-subunit and its tryptic fragments with [125I]-iodonaphthylazide, [32P]-ATP, and photolabeled ouabain, Curr. Top Membr. Trans. 19:127–130.

    Google Scholar 

  • Judah, J. D., Ahmed, K., and McLean, A. E. M., 1962, Ion transport and phosphoproteins of human red cells, Biochim. Biophys. Acta 65: 472–480.

    CAS  Google Scholar 

  • Kanazawa, T., Saito, M., and Tonomura, Y., 1967, Properties of a phosphorylated protein as a reaction intermediate of the Na + K sensitive ATPase, J. Biochem. (Tokyo) 61: 555–566.

    CAS  Google Scholar 

  • Kanazawa, T., Saito, M., and Tonomura, Y., 1970, Formation and decomposition of a phosphorylated intermediate in the reaction of Na*-K+ dependent ATPase, J. Biochem. (Tokyo) 67: 693–711.

    CAS  Google Scholar 

  • Kaniike, K., Erdmann, E., and Schoner, W., 1973, ATP binding to (Na’ + K+)-activated ATPase, Biochim. Biophys. Acta 298: 901–905.

    PubMed  CAS  Google Scholar 

  • Kaniike, K., Lindenmayer, G. M., Wallick, E. T., Lane, L. K., and Schwartz, A., 1976, Specific sodium-22 binding to a purified sodium + potassium adenosine triphosphatase. Inhibition by ouabain, J. Biol. Chem. 251: 4794–4796.

    CAS  Google Scholar 

  • Kapakos, J. G., and Steinberg, M., 1982, Fluorescent labeling of (Na + K)-ATPase by 5-iodoacetamidofluorescein, Biochim. Biophys. Acta 693: 493–496.

    PubMed  CAS  Google Scholar 

  • Kaplan, J. H., 1982, Sodium pump mediated ATP—ADP exchange. The sided effects of sodium and potassium ions, J. Gen. Physiol. 80: 915–937.

    PubMed  CAS  Google Scholar 

  • Kaplan, J. H., 1983, Na pump catalysed ATP: ADP exchange in red blood cells: The effects of intracellular and extracellular Na and K ions, Curr. Top. Membr. Trans. 19: 671–675.

    CAS  Google Scholar 

  • Kaplan, J. H., and Hollis, R. J., 1980, External Na dependence of ouabain-sensitive ATP—ADP exchange initiated by photolysis of intracellular caged-ATP in human red cell ghosts, Nature 288: 587–589.

    PubMed  CAS  Google Scholar 

  • Karlish, S. J. D., 1980, Characterization of conformational changes in (Na,K)ATPase labeled with fluorescein at the active site, J. Bioenerg. Biomembr. 12: 111–135.

    PubMed  CAS  Google Scholar 

  • Karlish, S. J. D., and Glynn, I. M., 1974, An uncoupled efflux of sodium ions from human red cells, probably associated with Na-dependent ATPase activity, Ann. N. Y. Acad. Sci. 242: 461–470.

    PubMed  CAS  Google Scholar 

  • Karlish, S. J. D., and Pick, U., 1981, Sidedness of the effects of sodium and potassium ions on the conformational state of the sodium-potassium pump, J. Physiol. 312: 505–529.

    PubMed  CAS  Google Scholar 

  • Karlish, S. J. D., and Stein, W. D., 1982a, Passive rubidium fluxes mediated by Na-K-ATPase reconstituted into phospholipid vesicles when ATP- and phosphate-free, J. Physiol. 328: 295–316.

    PubMed  CAS  Google Scholar 

  • Karlish, S. J. D., and Stein, W. D., 1982b, Effects of ATP or phosphate on passive rubidium fluxes mediated by Na-K-ATPase reconstituted into phospholipid vesicles, J. Physiol. 328: 317–331.

    PubMed  CAS  Google Scholar 

  • Karlish, S. J. D., and Yates, D. W., 1978, Tryptophan fluorescence of (Na* + K’)-ATPase as a tool for study of the enzyme mechanism, Biochim. Biophys. Acta 527: 115–130.

    PubMed  CAS  Google Scholar 

  • Karlish, S. J. D., Jorgensen, P. L., and Gitler, C. 1977, Identification of a membrane-embedded segment of the large polypeptide chain of (Nat,K*)ATPase, Nature 269: 715–717.

    PubMed  CAS  Google Scholar 

  • Karlish, S. J. D., Yates, D. W., and Glynn, I. M., 1978a, Elementary steps of the (Na- + K*)-ATPase mechanism, studied with formycin nucleotides, Biochim. Biophys. Acta 525: 230–251.

    PubMed  CAS  Google Scholar 

  • Karlish, S. J. D., Yates, D. W., and Glynn, I. M., 1978b, Conformational transitions between Na*-bound and K*-bound forms of (Na + K“)-ATPase, studied with formycin nucleotides, Biochim. Biophys. Acta 525: 252–264.

    PubMed  CAS  Google Scholar 

  • Karlish, S. J. D., Beaugé, L. A., and Glynn, I. M., 1979, Vanadate inhibits (Na* + K*)ATPase by blocking a conformational change of the unphosphorylated form, Nature 282: 333–335.

    PubMed  CAS  Google Scholar 

  • Karlish, S. J. D., Lieb, W. R., and Stein, W. D., 1982, Combined effects of ATP and phosphate on rubidium exchange mediated by Na-K-ATPase reconstituted into phospholipid vesicles, J. Physiol. 328: 333–350.

    PubMed  CAS  Google Scholar 

  • Kennedy, B. G., and De Weer, P., 1976, Relationship between Na: K and Na: Na exchange by the sodium pump of skeletal muscle, Nature 268: 165–167.

    Google Scholar 

  • Kennedy, B. G., Lunn, G., and Hoffman, J. F., 1983, Effect of intracellular adenine nucleotides on sodium pump catalyzed Na: Na and Na: K exchanges, Curr. Top. Memb. Trans. 19: 683–686.

    CAS  Google Scholar 

  • Kepner, G. R., and Macey, R. I., 1968, Membrane enzyme systems. Molecular size determinations by radiation inactivation, Biochim. Biophys. Acta 163: 188–203.

    PubMed  CAS  Google Scholar 

  • Keynes, R. D., 1954, The ionic fluxes in frog muscle, Proc. R. Soc. B. 142: 359–382.

    CAS  Google Scholar 

  • Keynes, R. D., and Steinhardt, R. A., 1968, The components of the Na efflux in frog muscle, J. Physiol. 198: 581–600.

    PubMed  CAS  Google Scholar 

  • Klevickis, C., and Grisham, C. M., 1982, Phosphorus-31 nuclear magnetic resonance studies of the conformation of an adenosine 5’-triphosphate analogue at the active site of (Na* + K)-ATPase from kidney medulla, Biochemistry 21: 69–79.

    Google Scholar 

  • Klodos, I., and Ncy, J. G., 1979, Effect of K and Li on intermediary steps in the Na,K-ATPase reaction, in: Na,K-ATPase: Structure and Kinetics (J. C. Skou and J. G. N?rby, eds.), Academic Press, London, pp. 331–342.

    Google Scholar 

  • Klodos, I., and Skou, J. C., 1975, The effect of Mg’* and chelating agents on intermediary steps of the reaction of Na,K-activated ATPase, Biochim. Biophys. Acta 391: 474–485.

    PubMed  CAS  Google Scholar 

  • Klodos, I., and Skou, J. C., 1977, The effect of chelators on Mg’, Na* -dependent phosphorylation of (Na* + K)-activated ATPase, Biochim. Biophys. Acta 481: 667–679.

    PubMed  CAS  Google Scholar 

  • Klodos, I., Nsrby, J. G., and Plesner, I. W., 1981, The steady-state kinetic mechanism of ATP hydrolysis catalysed by membrane-bound (Na* + K+)-ATPase from ox brain. II. Kinetic characterization of phosphointermediates, Biochim. Biophys. Acta 643: 463–482.

    PubMed  CAS  Google Scholar 

  • Koepsell, H., 1979, Conformational changes of membrane-bound (Nat + K *)-ATPase as revealed by trypsin digestion, J. Membr. Biol. 48: 69–94.

    PubMed  CAS  Google Scholar 

  • Koepsell, H., Hulla, F. W., and Fritzsch, G., 1982, Different classes of nucleotide binding sites in the (Na* + K+)-ATPase studied by affinity labeling and nucleotide-dependent SH-group modifications, J. Biol. Chem. 257: 10733–10741.

    PubMed  CAS  Google Scholar 

  • Koyal, D., Rao, S. N., and Askari, A., 1971, Studies on the partial reactions catalyzed by the (Nat + K*)- activated ATPase. I. Effects of simple anions and nucleotide triphosphates on the alkali-cation specificity of the p-nitrophenylphosphatase, Biochim. Biophys. Acta 225: 11–19.

    PubMed  CAS  Google Scholar 

  • Kracke, G. R., 1983, Absence of ouabain-like activity of the Na,K-ATPase inhibitor in guinea pig brain extract. Curr. Top. Membr. Trans. 19: 927–930.

    CAS  Google Scholar 

  • Kudoh, F., Nakamura, S., Yamaguchi, M., and Tonomura, Y., 1979, Binding of ouabain to Na+K+dependent ATPase during the ATPase reaction. Evidence for a dimer structure of the ATPase, J. Biochem. (Tokyo) 86: 1023–1028.

    CAS  Google Scholar 

  • Kuriki, Y., and Racker, E., 1976, Inhibition of (Na+ + K+)-adenosine triphosphatase and its partial reactions by quercetin, Biochemistry 15: 4951–4956.

    PubMed  CAS  Google Scholar 

  • Kuriki, Y., Halsey, J., Biltonen, R., and Racker, E., 1976, Calorimetric studies of the interactions of magnesium and phosphate with (Na+ + K+)ATPase: Evidence for a ligand induced conformational change in the enzyme, Biochemistry 15: 4956–4961.

    PubMed  CAS  Google Scholar 

  • Kyte, J., 1971, Purification of the sodium-and potassium-dependent adenosine triphosphatase from canine renal medulla, J. Biol. Chem. 246: 4157–4165.

    PubMed  CAS  Google Scholar 

  • Kyte, J., 1972, Properties of the two polypeptides of sodium-and potassium-dependent adenosine triphosphatase, J. Biol. Chem. 247: 7642–7649.

    PubMed  CAS  Google Scholar 

  • Kyte, J., 1975, Structural studies of sodium and potassium ion-activated adenosine triphosphatase. The relationship between molecular structure and the mechanism of active transport, J. Biol. Chem. 250: 7443–7449.

    PubMed  CAS  Google Scholar 

  • Kyte, J., 1976a, Immunoferritin determination of the distribution of (Na+ + K+)ATPase over the plasma membranes of renal convoluted tubules. I. Distal segment, J. Cell Biol. 68: 287–303.

    PubMed  CAS  Google Scholar 

  • Kyte, J., 1976b, Immunoferritin determination of the distribution of (Na+ + K+)ATPase over the plasma membranes of renal convoluted tubules. II. Proximal segment, J. Cell Biol. 68: 304–318.

    PubMed  CAS  Google Scholar 

  • Lane, L. K., Copenhaver, J. H., Lindenmayer, G. E., and Schwartz, A., 1973, Purification and characterization of, and [3H]ouabain binding to the transport adenosine triphosphatase from outer medulla of canine kidney, J. Biol. Chem. 248: 7197–7200.

    PubMed  CAS  Google Scholar 

  • Lant, A. F., Priestland, R. N., and Whittam, R., 1970, The coupling of downhill ion movements associated with reversal of the Na pump in human red cells, J. Physiol. 207: 291–301.

    PubMed  CAS  Google Scholar 

  • Lacis, P. C., and Letchworth, P. E., 1962, Cation influence on inorganic phosphate production in human erythrocytes, J. Cell. Comp. Physiol. 60: 229–234.

    Google Scholar 

  • Lee, K. H., and Blostein, R., 1980, Red cell sodium fluxes catalysed by the sodium pump in the absence of K+ and ADP, Nature 285: 338–339.

    PubMed  CAS  Google Scholar 

  • Lew, V. L., and Beaugé, L. A., 1979, Passive cation fluxes in red cell membranes, in: Membrane Transport in Biology, ( G. Giebisch, D. C. Tosteson, and H. H. Ussing, eds.), Springer-Verlag, Berlin, pp. 81–115.

    Google Scholar 

  • Lew, V. L., Glynn, I. M., and Ellory, J. C., 1970, Net synthesis of ATP by reversal of the sodium pump, Nature 225: 865–866.

    PubMed  CAS  Google Scholar 

  • Lew, V. L., Hardy, M. A., and Ellory, J. C., 1973, The uncoupled extrusion of Na+ through the Na+ pump, Biochim. Biophys. Acta 323: 251–266.

    PubMed  CAS  Google Scholar 

  • Liang, S-M., and Winter, C. G., 1977, Digitonin-induced changes in subunit arrangement in relation to some in vitro activities of the (Na+,K+)-ATPase, J. Biol. Chem. 252: 8278–8284.

    PubMed  CAS  Google Scholar 

  • Lin, M. H., and Akera, T., 1978, Increased (Na+,K+)-ATPase concentrations in various tissues of rats caused by thyroid hormone treatment, J. Biol. Chem. 253: 723–726.

    PubMed  CAS  Google Scholar 

  • Lindenmayer, G. E., and Schwartz, A., 1973, Nature of the transport adenosine triphosphatase digitalis complex. IV. Evidence that sodium—potassium competition modulates the rate of ouabain interaction with (Na“ + K+) adenosine triphosphatase during enzyme catalysis, J. Biol. Chem. 248: 1291–1300.

    PubMed  CAS  Google Scholar 

  • Lindenmayer, G. E., Laughter, A. H., and Schwartz, A., 1968, Incorporation of inorganic phosphate-32 into a Na+,K+-ATPase preparation: Stimulation by ouabain, Arch. Biochem. Biophys. 127: 187–192.

    PubMed  CAS  Google Scholar 

  • Lopez, V., Stevens, T., and Lindquist, R. N., 1976, Vanadium ion inhibition of alkaline phosphatasecatalyzed phosphate ester hydrolysis, Arch. Biochem. Biophys. 175: 31–38.

    PubMed  CAS  Google Scholar 

  • Lowe, A. G., and Reeve, L. A., 1983, Pre-steady state hydrolysis of ATP and enzyme phosphorylation in the Na,K-ATPase, Curr. Top. Membr. Trans. 19: 577–580.

    CAS  Google Scholar 

  • Lowe, A. G., and Smart, J. W., 1977, The pre-steady-state hydrolysis of ATP by porcine brain (Na+ + K+)-dependent ATPase, Biochim. Biophys. Acta 481: 695–705.

    PubMed  CAS  Google Scholar 

  • Macara, I. G., Kustin, K., and Cantley, L. C., 1980, Glutathione reduces cytoplasmic vanadate. Mechanism and physiological implications, Biochim. Biophys. Acta 629: 95–106.

    PubMed  CAS  Google Scholar 

  • MacGregor, G. A., Fenton, S., Alaghband-Zadeh, J., Markandu, N., Roulston, J. E., and De Wardener, H., 1981, Evidence for a raised concentration of a circulating sodium transport inhibitor in essential hypertension, Br. Med. J. 283: 1355–1357.

    CAS  Google Scholar 

  • Maizels, M., and Patterson, J. H., 1940, Survival of stored blood after transfusion, Lancet 2:417–420. Mârdh, S., 1975a, Bovine brain Nat,K+-stimulated ATP phosphohydrolase studied by a rapid-mixing technique. K+-stimulated liberation of [32P]orthophosphate from [32P]phosphoenzyme and resolution of the dephosphorylation into two phases, Biochim. Biophys. Acta 391: 448–463.

    Google Scholar 

  • Mârdh, S., 1975b, Bovine brain Na +,K + -stimulated ATP phosphohydrolase studied by a rapid-mixing technique. Detection of a transient [32P]phosphoenzyme formed in the presence of potassium ions, Biochim. Biophys. Acta 391: 464–473.

    PubMed  Google Scholar 

  • Mârdh, S., and Lindahl, S., 1977, On the mechanism of sodium-and potassium-activated adenosine triphosphatase. Time course of intermediary steps examined by computer simulation of transient kinetics, J. Biol. Chem. 252: 8058–8061.

    PubMed  Google Scholar 

  • Mârdh, S., and Post, R. L., 1977, Phosphorylation from adenosine triphosphate of sodium-and potassium-activated adenosine triphosphatase. Comparison of enzyme-ligand complexes as precursors to the phosphoenzyme, J. Biol. Chem. 252: 633–638.

    PubMed  Google Scholar 

  • Mârdh, S., and Zetterqvist, O., 1972, Phosphorylation of bovine brain Na,K-stimulated ATP phosphohydrolase by adenosine-[32P]triphosphate studied by a rapid-mixing technique, Biochim. Biophys. Acta 255: 231–238.

    PubMed  Google Scholar 

  • Mârdh, S., and Zetterqvist, O., 1974, Phosphorylation and dephosphorylation reactions of bovine brain (Nat -K“)-stimulated ATP phosphohydrolase studied by a rapid-mixing technique, Biochim. Biophys. Acta 350: 473–483.

    PubMed  Google Scholar 

  • Masiak, S. J., and D’Angelo, G., 1975, Effects of N-acetylimidazole on human erythrocyte ATPase activity. Evidence for a tyrosyl residue at the ATP-binding site of the (Na + K+)-dependent ATPase, Biochim. Biophys. Acta 382: 83–91.

    PubMed  CAS  Google Scholar 

  • Matchett, P. A., and Johnson, J. A., 1954, Inhibition of Na and K transport in frog sartorii in the presence of ouabain, Fed. Proc. 13: 384.

    Google Scholar 

  • Matsui, H., and Homareda, H., 1982, Interaction of sodium and potassium ions with Nat,K“-ATPase. I. Ouabain-sensitive alternative binding of three Na+ or two K+ to the enzyme, J. Biochem. (Tokyo) 92: 193–217.

    CAS  Google Scholar 

  • Matsui, H., and Schwartz, A., 1968, A mechanism of cardiac glycoside inhibition of the (Nat + K+)-dependent ATPase from cardiac tissue, Biochim. Biophys. Acta 151: 655–663.

    PubMed  CAS  Google Scholar 

  • Matsui, H., Hayashi, Y., Homareda, H., and Kimimura, M., 1977, Ouabain-sensitive 42K binding to,K * -ATPase purified from canine kidney outer medulla, Biochem. Biophys. Res. Commun. 75: 373–380.

    PubMed  CAS  Google Scholar 

  • Matsui, H., Hayashi, Y., Homareda, H., and Taguchi, M., 1983, Stoichiometrical binding of ligands to less than 160 K Daltons of Na’,K+-ATPase, Curr. Top. Membr. Trans. 19: 145–148.

    CAS  Google Scholar 

  • Maunsbach, A. B., Deguchi, N., and Jsrgensen, P. L., 1978, Ultrastructure of purified Na,K-ATPase, in: FEBS Symp. A4, Membrane Proteins, Vol. 45 ( P. Nicholls, J. V. Moller, P. L. Jcrgensen, and A. J. Moody, eds.), Pergamon, New York, pp. 173–181.

    Google Scholar 

  • Maunsbach, A. B., Skriver, E., and Jrgensen, P. L., 1979, Ultrastructure of purified Na,K-ATPase membranes, in: Na,K-ATPase: Structure and Kinetics (J. C. Skou and J. G. Nrby, eds.), Academic Press, London, pp. 3–13.

    Google Scholar 

  • Maunsbach, A. B., Skriver, E., and J¢rgensen, P. L., 1983, Electron microscope analysis of protein distribution in purified, membrane-bound Na,K-ATPase, Curr. Top. Membr. Trans. 19, in press.

    Google Scholar 

  • Mercer, R. W., and Dunham. P. B., 1981, Membrane-bound ATP fuels the Na/K pump. Studies on membrane-bound glycolytic enzymes on inside-out vesicles from human red cell membranes, J. Gen. Physiol. 78: 547–568.

    PubMed  CAS  Google Scholar 

  • Moczydlowski, E. G., and Fortes, P. A. G., 1981a, Characterization of 2’3’-O-(2,4,6-trinitrocyclohexadienylidene) adenosine 5’-triphosphate as a fluorescent probe of the ATP site of sodium and potassium transport adenosine triphosphatase. Determination of nucleotide binding stoichiometry and ion-induced changes in affinity for ATP, J. Biol. Chem. 256: 2346–2356.

    PubMed  CAS  Google Scholar 

  • Moczydlowski, E. G., and Fortes, P. A. G., 1981b, Inhibition of sodium and potassium adenosine triphosphatase by 2’3’-O-(2,4,6-trinitrocyclohexadienylidene) adenine nucleotides. Implications for the structure and mechanism of the Na: K pump, J. Biol. Chem. 256: 2357–2366.

    PubMed  CAS  Google Scholar 

  • Mone, M.D. and Kaplan, J.H., 1983, Cation activation of Na,K-ATPase after treatment with thimerosal, Curr. Top. Membr. Trans. 19: 465–469.

    CAS  Google Scholar 

  • Mullins, L. J., and Brinley, F. J., 1969, Potassium fluxes in dialyzed squid axons, J. Gen. Physiol. 53: 704–740.

    PubMed  CAS  Google Scholar 

  • Mullins, L. J., Fenn, W. O., Noonan, T. R., and Haege, L., 1941, Permeability of erythrocytes to radioactive potassium, Am. J. Physiol. 135: 93–101.

    CAS  Google Scholar 

  • Munakata, H., Schmid, K., Collins, J. H., Zot, A., Lane, L. K., and Schwartz, A., 1982, The a and 13 subunits of lamb kidney Na,K-ATPase are both glycoproteins, Biochem. Biophys. Res. Commun. 107: 229–231.

    PubMed  CAS  Google Scholar 

  • Munson, K. B.; 1981, Light dependent inactivation of (Na + K+)-ATPase with a new photoaffinity reagent, chromium arylazido-ß-alanyl ATP, J. Biol. Chem. 256:3223-3230.

    Google Scholar 

  • Nagai, K., and Yoshida, H., 1966, Biphasic effects of nucleotides on potassium dependent phosphatase, Biochim. Biophys. Acta 128: 410–412.

    PubMed  CAS  Google Scholar 

  • Nagai, K., Izumi, F., and Yoshida, H., 1966, Studies on potassium dependent phosphatase: Its distribution and properties, J. Biochem (Tokyo) 59: 295–303.

    CAS  Google Scholar 

  • Nagano, K., Fujihara, Y., Hara, Y., and Nakao, M., 1973, ATP as a modulator of Na*,K+,-ATPase, in: Organization of Energy-Transducing Membranes ( M. Nakao and L. Packer, eds.), University of Tokyo Press, Tokyo, pp. 47–61.

    Google Scholar 

  • Naidoo, B. K., Witty, T. R., Remers, W. A., and Besch, H. R., 1974, Cardiotonic steroids: I. Importance of 14 3-hydroxy in digitoxigenin, J. Pharmcol. Sci. 63: 1391–1394.

    CAS  Google Scholar 

  • Nakao, T., Nakao, M., Nagai, F., Kawai, K., Fujihara, Y., Hara, Y., and Fujita, M., 1973, Purification and some properties of Na,K-transport ATPase. II. Preparations with high specific activity obtained using aminoethyl cellulose chromatography, J. Biochem. (Tokyo) 73: 781–791.

    CAS  Google Scholar 

  • Neufeld, A. H., and Levy, H. M., 1969, A second ouabain-sensitive Na dependent ATPase in brain microsomes, J. Biol. Chem. 244: 6493–6497.

    PubMed  CAS  Google Scholar 

  • Neufeld, A. H., and Levy, H. M., 1970, The steady state level of phosphorylated intermediate in relation to the two sodium-dependent adenosine triphosphatases of calf brain microsomes, J. Biol. Chem. 245: 4962–4967.

    PubMed  CAS  Google Scholar 

  • Noble, D., 1980, Mechanisms of action of therapeutic levels of glycosides, Cardiovasc. Res. 14:495–514. Noonan, T. R., Fenn, W. O., and Haege, L., 1940, The distribution of injected radioactive potassium in rats, Am. J. Physiol. 132: 474–488.

    Google Scholar 

  • NOrby, J. G., 1983, Ligand interactions with the substrate site of Na,K-ATPase: Nucleotides, vanadate and phosphorylation, Curr. Top. Membr. Trans. 19: 281–314.

    Google Scholar 

  • NOrby, J. G., and Jensen, J., 1971, Binding of ATP to brain microsomal ATPase. Determination of the ATP-binding capacity and the dissociation constant of the enzyme-ATP complex as a function of K concentration, Biochim. Biophys. Acta 233: 104–116.

    PubMed  CAS  Google Scholar 

  • O’Connor, S. E., and Grisham, C. M., 1980, Distance determination at the active site of kidney (Nat + K+)ATPase by Mn(II) ion electron paramagnetic resonance, FEBS Lett. 118: 303–307.

    PubMed  Google Scholar 

  • Ottolenghi, P., 1979, The relipidation of delipidated Na,K-ATPase. An analysis of complex formation with dioleoylphosphatidylcholine and with dioleoylphophatidylethanolamine, Eur. J. Biochem. 99: 113–131.

    PubMed  CAS  Google Scholar 

  • Ottolenghi, P., and Jensen, J., 1983, The K + -induced apparent heterogeneity of high-affinity nucleotide-binding sites in (Na+ + K+)-ATPase can only be due to the oligomeric structure of the enzyme, Biochim. Biophys. Acta 727 in press.

    Google Scholar 

  • Ottolenghi, P., Ellory, J. C., and Klein, R., 1983, Radiation inactivation analysis of the partial reactions of NaK activated ATPase, Curr. Top. Membr. Trans. 19 in press.

    Google Scholar 

  • Overton, E., 1902, Beitrage zur allgemeinen Muskel-und Nervenphysiologie. II. Mittheilung. Ueber die Unentbehrlichkeit von Natrium- (oder Lithium-) Ionen fur den Contractionsact des Muskels, Pflugers Arch. Ges. Physiol. 92: 346–386.

    CAS  Google Scholar 

  • Pachence, J. M., Schoenborn, B. P., and Edelman, I. S., 1983, Low angle neutron scattering analysis of Na/K-ATPase in detergent solution, Biophys. J. 41: 370a.

    Google Scholar 

  • Patzelt-Wenczler, R., and Mertens, W., 1981, Effects of cations on high-affinity and low-affinity ATP-binding sites of (Na,K)-ATPase as studied by disulfides of thioinosine triphosphate and its analogue, Eur. J. Biochem. 121: 197–202.

    PubMed  CAS  Google Scholar 

  • Patzelt-Wenczler, R., and Schoner, W., 1981, Evidence for two different reactive sulfhydryl groups in the ATP-binding sites of (Na* + K)-ATPase, Eur. J. Biochem. 114: 79–87.

    PubMed  CAS  Google Scholar 

  • Perez, B., Miara, J., and Dahms, A. S., 1979, Probes at the medium and intermediate water oxygen exchange reactions of the Na,K-ATPase, in: Na,K-ATPase: Structure and Kinetics (J. C. Skou and J. G. Nrby, eds.), Academic Press, London, pp. 343-3358.

    Google Scholar 

  • Perrone, J. R., Hackney, J. F., Dixon, J. F., and Hokin, L. E., 1975, Molecular properties of purified (sodium and potassium)-activated adenosine triphosphatases and their subunits from the rectal gland of Squalus acanthias and the electric organ of Electrophorus electricus, J. Biol. Chem. 250: 4178–4184.

    CAS  Google Scholar 

  • Peters, W. H. M., Du Pont, J. J. H. H. M., Koppers, A., and Bonting, S. L., 1981, Studies on (Na+ + K“)-activated ATPase. XLVII. Chemical composition, molecular weight and molar ratio of the subunits of the enzyme from rabbit kidney outer medulla, Biochim. Biophys. Acta 641: 55–70.

    PubMed  CAS  Google Scholar 

  • Peterson, G. L., and Hokin, L. E., 1980, Improved purification of brine-shrimp (Anemia saline) (Na + K ’)activated adenosine triphosphatase and amino-acid and carbohydrate analogues of the isolated subunits, Biochem.J. 192: 107–118.

    PubMed  CAS  Google Scholar 

  • Peterson, G. L., and Hokin, L. E., 1981, Molecular weight and stoichiometry of the sodium-and potassium-activated adenosine triphosphatase subunits, J. Biol. Chem. 256: 3751–3761.

    PubMed  CAS  Google Scholar 

  • Plesner, L., and Plesner, I. W., 198la, The steady-state kinetic mechanism of ATP hydrolysis catalyzed by membrane-bound (Na+ K)-ATPase from ox brain. I. Substrate identity, Biochim. Biophys. Acta 643:449-462.

    Google Scholar 

  • Plesner, I. W., and Plesner, L., 1981b, The steady state kinetic mechanism of ATP hydrolysis catalyzed by membrane-bound (Na- + K’)-ATPase from ox brain. IV. Rate-constant determination, Biochim. Biophys. Acta 648: 231–246.

    PubMed  CAS  Google Scholar 

  • Plesner, I. W., Plesner, L., N¢rby, J. G., and Klodos, I., 1981, The steady-state kinetic mechanism of ATP hydrolysis catalyzed by membrane-bound (Na+ + K+)-ATPase from ox brain. III. A minimal model, Biochim. Biophys. Acta 643: 483–494.

    PubMed  CAS  Google Scholar 

  • Post, R. L., and Kume, S., 1973, Evidence for an aspartyl phosphate residue at the active site of sodium and potassium ion transport adenosine triphosphatase, J. Biol. Chem. 248: 6993–7000.

    PubMed  CAS  Google Scholar 

  • Post, R. L., and Sen, A. K., 1965, An enzymatic mechanism of active sodium and potassium transport, J. Histochem. 13: 105–112.

    CAS  Google Scholar 

  • Post, R. L., Merritt, C. R., Kinsolving, C. R., and Albright, C. D., 1960, Membrane adenosine triphosphate-dependent sodium and potassium transport across kidney membrane, J. Biol. Chem. 240: 1437–1445.

    Google Scholar 

  • Post, R. L., Sen, A. K., and Rosenthal, A. S., 1965, A phosphorylated intermediate in adenosine triphosphate-dependent sodium and potassium transport across kidney membranes, J. Biol. Chem. 240: 1437–1445.

    PubMed  CAS  Google Scholar 

  • Post, R. L., Kume, S., Tobin, T., Orcutt, B., and Sen, A. K., 1969, Flexibility of an active centre in sodium-plus-potassium adenosine triphosphatase, J. Gen. Physiol. 54: 306s - 326s.

    CAS  Google Scholar 

  • Post, R. L., Hegyvary, C., and Kume, S., 1972, Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase, J. Biol. Chem. 247: 6530–66540.

    PubMed  CAS  Google Scholar 

  • Post, R. L., Kume, S., and Rogers, F. N., 1973, Alternating paths of phosphorylation of the sodium and potassium ion pump of plasma membranes, in: Mechanisms in Bioenergetics ( G. F. Azzone, S. Ernster, E. Papa, N. Quagliariello, and N. Siliprandi, eds.), Academic Press, New York, pp. 203–218.

    Google Scholar 

  • Post, R. L., Toda, G., and Rogers, F. N., 1975a, Phosphorylation by inorganic phosphate of sodium plus potassium ion transport adenosine triphosphatase. Four reactive states, J. Biol. Chem. 250: 691–701.

    PubMed  CAS  Google Scholar 

  • Post, R. L., Toda, G., Kume, S., and Taniguchi, K., 1975b, Synthesis of adenosine triphosphate by way of potassium-sensitive phosphoenzyme of sodium, potassium adenosine triphosphatase, J. Supramolec. Struct. 3: 479–497.

    CAS  Google Scholar 

  • Post, R. L., Hunt, D., Walderhaug, M. O., Perkins, R. C., Park, J. H., and Beth, A. H., 1979, Vanadium compounds in relation to inhibition of sodium and potassium adenosine triphosphatase, in: Na,KATPase: Structure and Kinetics (J. C. Skou and J. G. Nrby, eds.), Academic Press, London, pp. 389–401.

    Google Scholar 

  • Poston, L., Sewell, R. B., Wilkinson, S. P., Richardson, P. J., Williams, R., Clarkson, E. M., MacGregor, G. A., and De Wardener, H. E., 1981, Evidence for a circulating sodium transport inhibitor in essential hypertension, Br. Med. J. 282: 847–849.

    CAS  Google Scholar 

  • Priestland, R. N., and Whittam, R., 1968, The influence of external sodium ions on the sodium pump in erythrocytes, J. Physiol. 109: 369–374.

    CAS  Google Scholar 

  • Proverbio, F., and Hoffman, J. F., 1977, Membrane compartmentalized ATP and its preferential use by the Na,K-ATPase of human red cell ghosts, J. Gen. Physiol. 69: 605–632.

    PubMed  CAS  Google Scholar 

  • Reeves, A. S., Collins, J. H., and Schwartz, A., 1980, Isolation and characterization of (Na,K)-ATPase proteolipid, Biochem. Biophys. Res. Commun. 95: 1591–1598.

    PubMed  CAS  Google Scholar 

  • Rega, A. F., Garrahan, P. J., and Pouchan, M. I., 1970, Potassium activated phosphatase from human red blood cells. The asymmetrical effects of K+, Na’, Mg’ + and adenosine triphosphate, J. Membr. Biol. 3: 14–25.

    CAS  Google Scholar 

  • Rempeters, G., and Schoner, W., 1983, Imidazole chloride and Tris chloride substitute for sodium chloride in inducing high affinity AdoPP[NH]P binding to (Na* + K+)-ATPase, Biochim. Biophys. Acta 727: 13–21.

    PubMed  CAS  Google Scholar 

  • Repke, K. R. H., 1965, Effect of digitalis on membrane adenosine triphosphatase of heart muscle, in: Drugs and Enzymes, Vol. 4 (B. B. Brodie and J. Gillette, eds.), Proc. 2nd Int. Pharmacol. Meet. Prague, 1963, Pergamon Press, Oxford, and Czechoslovak Medical Press, pp. 65–87.

    Google Scholar 

  • Repke, K. R. H., and Dittrich, F., 1979, Subunit-subunit interaction: Determinant of reactivity and cooperativity of Na,K-ATPase, in: Na,K-ATPase: Structure and Kinetics (J. C. Skou and J. G. Nrby, eds.), Academic Press, London, pp. 487–500.

    Google Scholar 

  • Repke, K. R. H., and Portius, H. J., 1966, Analysis of structure activity relationships in cardioactive compounds on the molecular level, in: Scientiae Pharmaceuticae—I, Proc. 25th Congr. Pharmaceut. Sci., Prague, 1965, pp. 39–57.

    Google Scholar 

  • Repke, K. R. H., and Schon, R., 1973, Flip-Flop model of (Na,K)-ATPase function, Acta Biol. Med. Ger. 31: K19 - K30.

    PubMed  Google Scholar 

  • Richards, D. E., Ellory, J. C., and Glynn, I. M., 1981, Radiation inactivation of (Na’ + K+)-ATPase. A small target size for the K+-occluding mechanism, Biochim. Biophys. Acta 648: 284–286.

    PubMed  CAS  Google Scholar 

  • Robinson, J. D., 1969, Kinetic studies on a brain microsomal adenosine triphosphatase. III. Potassium-dependent phosphatase activity, Biochemistry 8: 3348–3355.

    PubMed  CAS  Google Scholar 

  • Robinson, J. D., 1970, Phosphatase activity stimulated by Na+ plus K+: Implications for the (Na+ plus K+)-dependent adenosine triphosphatase, Arch. Biochem. Biophys. 139: 164–171.

    PubMed  CAS  Google Scholar 

  • Robinson, J. D., 1973, Cation sites of the (Na+ + K’)-dependent ATPase. Mechanisms for Nat –induced changes in K+ affinity of the phosphatase activity, Biochim. Biophys. Acta 321: 662–670.

    PubMed  CAS  Google Scholar 

  • Robinson, J. D., 1974, Nucleotide and divalent cation interactions with the (Na’ + K+)-ependent AT-Pase, Biochim. Biophys. Acta 341: 232–247.

    PubMed  CAS  Google Scholar 

  • Robinson, J. D., 1975, Functionally distinct classes of K+ sites on the (Nat + K’)-dependent ATPase, Biochim. Biophys. Acta 384: 250–264.

    PubMed  CAS  Google Scholar 

  • Robinson, J. D., 1976a, Substrate sites of the (Nat + K+)-dependent ATPase, Biochim. Biophys. Acta 429: 1006–1019.

    PubMed  CAS  Google Scholar 

  • Robinson, J. D., 1976b, The (Na+ + K’)-dependent ATPase; mode of inhibition of ADP/ATP exchange activity by MgCl2, Biochim. Biophys. Acta 440: 711–722.

    PubMed  CAS  Google Scholar 

  • Robinson, J. D., 1980, Sensitivity of the (Nat + K+)-ATPase to state-dependent inhibitors: Effects of digitonin and Triton X-100, Biochim. Biophys. Acta 598: 543–553.

    PubMed  CAS  Google Scholar 

  • Robinson, J. D., 1981, Substituting manganese for magnesium alters certain reaction properties of the (Na’ + K+)-ATPase, Biochim. Biophys. Acta 642: 405–417.

    PubMed  CAS  Google Scholar 

  • Robinson, J. D., 1982, Tryptic digestion of the (Na + K)-ATPase is both sensitive to and modifies K’ interactions with the enzyme, J. Bioenerg. Biomembr. 14: 319–333.

    PubMed  CAS  Google Scholar 

  • Robinson, J. D., 1983, Kinetic studies on the (Na+ + K’)-dependent ATPase. Evidence for coexisting sites for Na’, K+ and Mg’, Biochim. Biophys. Acta 727: 63–69.

    PubMed  CAS  Google Scholar 

  • Robinson, J. D., and Flashner, M. S., 1979, The (Nat + K+)-activated ATPase; enzymatic and transport properties, Biochim. Biophys. Acta 549: 145–176.

    PubMed  CAS  Google Scholar 

  • Robinson, J. D., and Mercer, R. W., 1981, Vanadate binding to the (Na + K)-ATPase, J. Bioenerg. Biomembr. 13: 205–218.

    PubMed  CAS  Google Scholar 

  • Robinson, J. D., Flashner, M. S., and Marin, G. K., 1978, Inhibition of the (Na’ + K+)-dependent ATPase by inorganic phosphate, Biochim. Biophys. Acta 509: 419–428.

    PubMed  CAS  Google Scholar 

  • Rogers, T. B., and Lazdunski, M., 1979a, Photoaffinity labeling of the digitalis receptor in the (sodium + potassium)-activated adenosinetriphosphatase, Biochemistry 18: 135–140.

    PubMed  CAS  Google Scholar 

  • Rogers, T. B., and Lazdunski, M., 1979b, Photoaffinity labelling of a small protein component of a purified (Na’ + K’)ATPase, FEBS Lett. 98: 373–376.

    PubMed  CAS  Google Scholar 

  • Rossi, B., Gache, C., and Lazdunski, M., 1978, Specificity and interactions at the cationic sites of the axonal (Na’,K’)-activated adenosinetriphosphatase, Eur. J. Biochem. 85: 561–570.

    PubMed  CAS  Google Scholar 

  • Rossi, B., Vuilleumier, P., Gache, C., Balerna, M., and Lazdunski, M., 1980, Affinity labeling of the digitalis receptor with p-nitrophenyltriazene-ouabain, a highly specific alkylating agent, J. Biol. Chem. 255: 9936–9941.

    PubMed  CAS  Google Scholar 

  • Rossi, B., Ponzio, G., and Lazdunski, M., 1982, Identification of the segment of the catalytic subunit of (Na’, K’)ATPase containing the digitalis binding site, EMBO J. 1: 859–861.

    PubMed  CAS  Google Scholar 

  • Rubinson, K. A., 1981, Concerning the form of biochemically active vanadium, Proc. R. Soc. B. 212: 65–84.

    CAS  Google Scholar 

  • Ruoho, A., and Kyte, J., 1974, Photoaffinity labeling of the ouabain-binding site on (Na’ + K’)adenosinetriphosphatase, Proc. Natl. Acad. Sci. USA 71: 2352–2356.

    PubMed  CAS  Google Scholar 

  • Sabatini, D., Golman, D., Sabban, E., Sherman, J., Morimoto, T., Kreibich, G., and Adesnik, M., 1982, Mechanisms for the incorporation of protein into the plasma membranes, Cold Spring Harbor Symp. Quant. Biol. XLVI:807–818.

    Google Scholar 

  • Sachs, J. R., 1967, Competition effects of some cations on active potassium transport in the human red blood cell, J. Clin. Invest. 46: 1433–1441.

    PubMed  CAS  Google Scholar 

  • Sachs, J. R., 1970, Sodium movements in the human red blood cell, J. Gen. Physiol. 56: 322–341.

    PubMed  CAS  Google Scholar 

  • Sachs. J. R., 1972, Recoupling the Na-K pump, J. Clin. Invest. 51: 3244–3247.

    PubMed  CAS  Google Scholar 

  • Sachs, J. R., 1974, Interaction of external K, Na, and cardioactive steroids with Na-K pump of the human red blood cell, J. Gen. Physiol. 63: 123–143.

    PubMed  CAS  Google Scholar 

  • Sachs, J. R., 1977a, Kinetics of the inhibition of the Na-K pump by external sodium, J. Physiol. 264: 449–470.

    PubMed  CAS  Google Scholar 

  • Sachs, J. R., 1977b, Kinetic evaluation of the Na-K pump reaction mechanisms, J. Physiol. 273: 489–514.

    PubMed  CAS  Google Scholar 

  • Sachs, J. R., 1979, A modified consecutive model for the Na,K-pump, in: Na,K-ATPase: Structure and Kinetics ( J. C. Skou and J. G. Ndrby, eds.), Academic Press, London, pp. 463–473.

    Google Scholar 

  • Sachs, J. R., 1980, The order of release of sodium and addition of potassium in the sodium—potassium pump reaction mechanism, J. Physiol. 302: 219–240.

    PubMed  CAS  Google Scholar 

  • Sachs, J. R., 1981a, Mechanistic implications of the potassium—potassium exchange carried out by the sodium—potassium pump, J. Physiol. 316: 263–277.

    PubMed  CAS  Google Scholar 

  • Sachs, J. R., 1981b, Internal potassium stimulates the sodium—potassium pump by increasing cell ATP concentration, J. Physiol. 319: 515–528.

    PubMed  CAS  Google Scholar 

  • Sachs, J. R., and Welt, L. G., 1967, The concentration dependence of active K transport in the human red blood cell, J. Clin. Invest. 46: 65–76.

    PubMed  CAS  Google Scholar 

  • Sachs, S., Rose, J. D., and Hirschowitz, B. I., 1967, Acetyl phosphatase in brain microsomes: A partial reaction of Na + K’-ATPase, Arch. Biochem. Biophys. 119: 277–281.

    PubMed  CAS  Google Scholar 

  • Schatzmann, H. J., 1953, Herzglykoside als Hemmstoffe fur den aktiven Kalium und Natrium Transport durch die Erythrocytenmembran, Helv. Physiol. Acta 11: 346–354.

    CAS  Google Scholar 

  • Schönfeld, W., Schön, R., Menke, K. H., and Repke, K. R. H., 1972, Identification of conformational states of transport ATPase by kinetic analysis of ouabain binding, Acta Biol. Med. Germ. 28: 935–956.

    PubMed  Google Scholar 

  • Schoot, B. M., Van Emst-de Vries, S. E., Van Haard, P. M. M., De Pont, J. J. H. H. M., and Bonting, S. L., 1980, Studies on (Na* + K’)-activated ATPase. XLVI. Effect on cation-induced conformational changes on sulthydryl group modification, Biochim. Biophys. Acta 602: 144–154.

    PubMed  CAS  Google Scholar 

  • Schuurmans Stekhoven, F. M. A. H., and Bonting, S. L., 1981, Transport adenosine triphosphatases: Properties and functions, Physiol. Rev. 61: 1–76.

    PubMed  CAS  Google Scholar 

  • Schuurmans Stekhoven, F. M. A. H., Swarts, H. G. P., De Pont, J. J. H. H. M., and Bonting, S. L., 1980, Studies in (Na’ + K’)-activated ATPase. XLIV. Single phosphate incorporation during dual phosphorylation by inorganic phosphate and adenosine triphosphate, Biochim. Biophys. Acta 597: 100–111.

    PubMed  CAS  Google Scholar 

  • Schuurmans Stekhoven, F. M. A. H., Swarts, H. G. P., De Pont, J. J. H. H. M., and Bonting, S. L., 1981, Studies on (Na’ + K’)-activated ATPase. XLV. Magnesium induces two low-affinity non-phosphorylating nucleotide binding sites per molecule, Biochim. Biophys. Acta 649: 533–540.

    PubMed  CAS  Google Scholar 

  • Schwartz, A., Matsui, H., and Laughter, A. H., 1968, Tritiated digoxin binding to (Na’ + K’)-activated adenosine triphosphatase: Possible allosteric site, Science 160: 323–325.

    PubMed  CAS  Google Scholar 

  • Schwartz, A., Lindenmayer, G. E., and Allen, J. C., 1975, The sodium-potassium adenosine triphosphatase: pharmacological, physiological, and biochemical aspects, Pharmacol. Rev. 27: 3–134.

    PubMed  CAS  Google Scholar 

  • Schwartz, A., Whitmer, K., Grupp, G., Grupp, I., Adams, R. J., and Lee, S-W., 1982, Mechanism of action of digitalis: Is the Na,K-ATPase the pharmacological receptor ? Ann. N. Y. Acad. Sci. 402: 253–270.

    PubMed  CAS  Google Scholar 

  • Sen, A. K., Tobin, T., and Post, R. L., 1969, A cycle for ouabain inhibition of sodium-and potassium-dependent adenosine triphosphatase, J. Biol. Chem. 244: 6596–6604.

    PubMed  CAS  Google Scholar 

  • Sen, P. C., Kapakos, J. G., and Steinberg, M., 1981, Modification of (Nat + K+)-dependent ATPase by fluorescein isothiocyanate: Evidence for the involvement of different amino groups at different pH values, Arch. Biochem. Biophys. 211: 652–661.

    PubMed  CAS  Google Scholar 

  • Shaffer, E., Azari, J., and Dahms, A. S., 1978, Properties of the Pi—oxygen exchange reaction catalyzed by (Na+,K+)-dependent adenosine triphosphatase, J. Biol. Chem. 253: 5696–5706.

    PubMed  CAS  Google Scholar 

  • Shaver, J. L., and Stirling, C., 1978, Ouabain binding to renal tubules of the rabbit, J. Cell Biol. 76: 278–292.

    PubMed  CAS  Google Scholar 

  • Siegel, G. J., 1979, Revised enzyme reaction model for Na,K-ATPase incorporating consecutive and simultaneous reactions with Na+ and K+, in: Na,K-ATPase: Structure and Kinetics ( J. C. Skou and J. G. NOrby, eds.), Academic Press, London, pp. 287–299.

    Google Scholar 

  • Siegel, G. J., and Albers, R. W., 1967, Sodium—potassium activated adenosine triphosphatase of Electrophorus electric organ. IV. Modification of responses to sodium and potassium by arsenite plus 2,3dimercaptopropanol, J. Biol. Chem. 242: 4972–4975.

    PubMed  CAS  Google Scholar 

  • Siegel, G. J., Koval, G. J., and Albers, R. W., 1969, Sodium—potassium-activated adenosine triphosphatase. VI. Characterization of the phosphoprotein formed from orthophosphate in the presence of ouabain, J. Biol. Chem. 244: 3264–3269.

    PubMed  CAS  Google Scholar 

  • Siegel, G. J., Fogt, S. K., and Iyengar, S., 1973, Characteristics of lead ion-stimulated phosphorylation of Electrophorus electricus electroplax (Na + K+)-adenosine triphosphatase and inhibition of ATP—ADP exchange, J. Biol. Chem. 253: 7207–7211.

    Google Scholar 

  • Simons, T. J. B., 1974, Potassium: potassium exchange catalysed by the sodium pump in human red cells, J. Physiol. 237: 123–155.

    PubMed  CAS  Google Scholar 

  • Simons, T. J. B., 1975, The interaction of ATP-analogues possessing a blocked y-phosphate group with the sodium pump in human red cells, J. Physiol. 244: 731–739.

    PubMed  CAS  Google Scholar 

  • Sjodin, R. A., 1971, The kinetics of Na extrusion in striated muscle as functions of the external sodium and potassium ion concentrations, J. Gen. Physiol. 57: 164–187.

    PubMed  CAS  Google Scholar 

  • Skou, J. C., 1957, The influence of some cations on an adenosine triphosphatase from peripheral nerves, Biochim. Biophys. Acta 23: 394–401.

    PubMed  CAS  Google Scholar 

  • Skou, J. C., 1960, Further investigations on a Mg’ + + Nat-activated adenosine triphosphatase, possibly related to the active linked transport of Na+ and K+ across the nerve membrane, Biochim. Biophys. Acta 42: 6–23.

    CAS  Google Scholar 

  • Skou, J. C., 1965, Enzymatic basis for active transport of Na+ and K+ across cell membrane, Physiol. Rev. 45: 596–617.

    PubMed  CAS  Google Scholar 

  • Skou, J. C., 1971, Sequence of steps in the (Na + K)-activated enzyme system in relation to sodium and potassium transport, Curr. Top. Bioenerg. 4: 357–398.

    CAS  Google Scholar 

  • Skou, J. C., 1974a, Effect of ATP on the intermediary steps of the reaction of the (Na+ + K+)-dependent enzyme system. I. Studied by the use of N-ethylmaleimide inhibition as a tool, Biochim. Biophys. Acta 339: 234–245.

    CAS  Google Scholar 

  • Skou, J. C., 1974b, Effect of ATP on the intermediary steps of the reaction of the (Na+ + K+)-dependent enzyme system. III. Effect on the p-nitrophenylphosphatase activity of the system, Biochim. Biophys. Acta 339: 258–273.

    CAS  Google Scholar 

  • Skou, J. C., 1982, The effect of pH, of ATP and of modification with pyridoxal 5-phosphate on the conformational transition between the Nat-form and the K+-form of the (Nat + K+)-ATPase, Biochim. Biophys. Acta 688: 369–380.

    PubMed  CAS  Google Scholar 

  • Skou, J. C., and Esmann, M., 1979, Preparation of membrane-bound and of solubilized (Na+ + K“)ATPase from rectal glands of Squalus acanthias. The effect of preparative procedures on purity, specific and molar activity, Biochim. Biophys. Acta 567: 436–114.

    PubMed  CAS  Google Scholar 

  • Skou, J. C., and Esmann, M., 1980, Effects of ATP and protons on the Na: K selectivity of the (Na+ + K+)ATPase studied by ligand effects on intrinsic and extrinsic fluorescence, Biochim. Biophys. Acta 601: 386–402.

    PubMed  CAS  Google Scholar 

  • Skou, J. C., and Esmann, M., 1981, Eosin, a fluorescent probe of ATP binding to the (Na* + K“)- ATPase, Biochim. Biophys. Acta 647: 232–240.

    PubMed  CAS  Google Scholar 

  • Skou, J. C., and Esmann, M., 1983, Effect of magnesium ions on the high-affinity binding of eosin to the (Na* + K*)-ATPase, Biochim. Biophys. Acta 727: 101–107.

    PubMed  CAS  Google Scholar 

  • Skriver, E., Maunsbach, A. B., and Jsrgensen, P. L., 1980, Ultrastructure of Na,K-transport vesicles reconstituted with purified renal Na,K-ATPase, J. Cell Biol. 86: 746–754.

    PubMed  CAS  Google Scholar 

  • Skvortsevich, E. G., Panteleeva, N. S., and Pisareva, L. N., 1972, The reaction of oxygen isotope exchange in the system of Na’-K+-dependent ATPase, Proc. Acad. Sci. USSR 206: 240.

    CAS  Google Scholar 

  • Smith, R. L., Zinn, K., and Cantley, L. C., 1980, A study of the vanadate-trapped state of the (Na,K)-ATPase. Evidence against interacting nucleotide site models, J. Biol. Chem. 255: 9852–9859.

    PubMed  CAS  Google Scholar 

  • Stein, W. D., Lieb, W. R., Karlish, S. J. D., and Eilam, Y., 1973, A model for the active transport of sodium and potassium ions as mediated by a tetrameric enzyme, Proc. Natl. Acad. Sci. USA 70: 275–278.

    PubMed  CAS  Google Scholar 

  • Steinbach, H. B., 1940, Sodium and potassium in frog muscle, J. Biol. Chem. 133: 695–701.

    CAS  Google Scholar 

  • Steinbach, H. B., 1951, Sodium extrusion from isolated frog muscle, Am. J. Physiol. 167: 284–287.

    PubMed  CAS  Google Scholar 

  • Steinbach, H. B., 1952, On the sodium and potassium balance of isolated frog muscles, Proc. Natl. Acad. Sci. USA 38: 451–455.

    PubMed  CAS  Google Scholar 

  • Swann, A. C., 1983, (Na+K)-ATPase of mammalian brain: Effects of temperature on cation and ATP interactions regulating phosphatase activity, Arch. Biochem. Biophys. 221:148–157.

    Google Scholar 

  • Swann, A. C., and Albers, R. W., 1975, Sodium + potassium-activated ATPase of mammalian brain; regulation of phosphatase activity, Biochim. Biophys. Acta 382: 437–456.

    PubMed  CAS  Google Scholar 

  • Swann, A. C., and Albers, R. W., 1978, Sodium and potassium ion dependent adenosine triphosphatase of mammalian brain; interactions of magnesium ions with the phosphatase site, Biochim. Biophys. Acta 523: 215–227.

    PubMed  CAS  Google Scholar 

  • Swann, A. C., and Albers, R. W., 1980, (Na++ K+)-ATPase of mammalian brain: Differential effects on cation affinities of phosphorylation by ATP and acetylphosphate, Arch. Biochem. Biophys. 203:422–427.

    Google Scholar 

  • Sweadner, K. J., 1979, Two molecular forms of (Na* + K*)-stimulated ATPase in brain. Separation and difference in affinity for strophanthidin, J. Biol. Chem. 254: 6060–6067.

    PubMed  CAS  Google Scholar 

  • Sweadner, K. J., and Goldin, S. M., 1975, Reconstitution of active ion transport by the sodium and potassium ion-stimulated adenosine triphosphatase from canine brain, J. Biol. Chem. 250: 4022–4024.

    PubMed  CAS  Google Scholar 

  • Taniguchi, K., and Iida, S., 1972, Two apparently different ouabain binding sites of (Na* + K+)-ATPase, Biochim. Biophys. Acta 288: 98–102.

    PubMed  CAS  Google Scholar 

  • Taniguchi, K., and Iida, S., 1972, Two apparently different ouabain binding sites of (Na* + K*)-ATPase, Biochim. Biophys. Acta 288: 98–102.

    PubMed  CAS  Google Scholar 

  • Taniguchi, K., and Post, R. L., 1975, Synthesis of adenosine triphosphate and exchange between inorganic phosphate and adenosine triphosphate in sodium and potassium ion transport adenosine triphosphatase, J. Biol. Chem. 250: 3010–3018.

    PubMed  CAS  Google Scholar 

  • Taniguchi, K., Suzuki, K., and Iida, S., 1982, Conformational change accompanying transition of ADP-sensitive phosphoenzyme to potassium-sensitive phosphoenzyme of (Na’,K“)-ATPase modified with N-[p-(2-benzimidazolyl)phenyllmaleimide, J. Biol. Chem. 257: 10659–10667.

    PubMed  CAS  Google Scholar 

  • Tobin, T., and Brody, T. M., 1972, Rates of dissociation of enzyme—ouabain complexes and Kos values in (Na * + K *) adenosine triphosphatase from different species, Biochem. Pharmacol. 21: 1553–1560.

    PubMed  CAS  Google Scholar 

  • Tobin, T., and Sen, A. K., 1970, Stability and ligand sensitivity of (3H)ouabain binding to (Na* + K“)-ATPase, Biochim. Biophys. Acta 198: 120–131.

    PubMed  CAS  Google Scholar 

  • Tobin, T., Henderson, R., and Sen. A. K., 1972, Species and tissue differences in the rate of dissociation of ouabain from (Na* + K’)-ATPase, Biochim. Biophys. Acta 274: 551–555.

    PubMed  CAS  Google Scholar 

  • Tobin, T., Akera, T., Baskin, S. I., and Brody, T. M., 1973, Calcium ion and sodium-and potassium-dependent adenosine triphosphatase: Its mechanism of inhibition and identification of the El-P intermediate, Mol. Pharmacol. 9: 336–349.

    PubMed  CAS  Google Scholar 

  • Tobin, T., Akera, T., and Brody, T. M., 1974, Studies on the two phosphoenzyme conformations of Na* + K* ATPase, Ann. N. Y. Acad. Sci. 242: 120–132.

    PubMed  CAS  Google Scholar 

  • Tonomura, Y., and Fukushima, Y., 1974, Kinetic properties of phosphorylated intermediates in the reaction of Na’,K*-ATPase, Ann. N. Y. Acad. Sci. 242: 92–105.

    PubMed  CAS  Google Scholar 

  • Tosteson, D. C., 1963, Active transport, genetics, and cellular evolution, Fed. Proc. 22: 19–26.

    PubMed  CAS  Google Scholar 

  • Van Groningen, H. E. M., and Slater, E. C., 1963, The effect of oligomycin on the (Na+ + K’)-activated Mg-ATPase of brain microsomes and erythrocyte membrane, Biochim. Biophys. Acta 73: 527–530.

    Google Scholar 

  • Van Winkle, W. B., Lane, L. K., and Schwartz, A., 1976, The subunit fine structure of isolated, purified Na’,K’-adenosine triphosphatase, Exp. Cell Rev. 100: 291–296.

    Google Scholar 

  • Vogel, F., Meyer, H. W., Grosse, R., and Repke, K. R. H., 1977, Electron microscopic visualization of the arrangement of the two protein compounds of (Na’ + K+)-ATPase, Biochim. Biophys. Acta 470: 497–502.

    PubMed  CAS  Google Scholar 

  • Wallick, E. T., and Schwartz, A., 1974, Thermodynamics of the rate of binding of ouabain to the sodium, potassium adenosine triphosphatase, J. Biol. Chem. 249: 5141–5147.

    PubMed  CAS  Google Scholar 

  • Whitmer, K. R., Epps, D., and Schwartz, A., 1983, An endogenous inhibitor of Na+,K+-ATPase: “Endodigin,” Curr. Top. Membr. Trans. 19 in press.

    Google Scholar 

  • Whittam, R., 1962, The asymmetrical stimulation of a membrane adenosine triphosphatase in relation to active cation transport, Biochem. J. 84: 110–118.

    PubMed  CAS  Google Scholar 

  • Whittam, R., Wheeler, K. P., and Blake, A., 1964, Oligomycin and active transport reactions in cell membranes, Nature 203: 720–724.

    PubMed  CAS  Google Scholar 

  • Wildes, R. A., Evans, H. J., and Chiu, J., 1973, Effects of cations on the adenosine diphosphate—adenosine triphosphate exchange reaction catalyzed by rat brain microsomes, Biochim. Biophys. Acta 307: 162–168.

    PubMed  CAS  Google Scholar 

  • Wilson, W. E., Sivitz, W.I., and Hanna, L. T., 1970, Inhibition of calf brain membranal sodium-and potassium-dependent adenosine triphosphatase by cardioactive sterols. A binding site model, Mol. Pharmacol. 6: 449–459.

    PubMed  CAS  Google Scholar 

  • Winslow, J. W., 1981, The reaction of sulfhydryl groups of sodium and potassium ion-activated adenosine triphosphatase with N-ethylmaleimide. The relationship between ligand-dependent alterations of nucleophilicity and enzymatic conformational states, J. Biol. Chem. 256: 9522–9531.

    PubMed  CAS  Google Scholar 

  • Winter, C. G., and Moss, A. J., 1979, Ultracentrifugal analysis of the enzymatically active fragments produced by digitonin action on Na,K-ATPase, in: Na,K-ATPase: Structure and Kinetics (J. C. Skou and J. G. N?rby, eds.), Academic Press, London, pp. 25–32.

    Google Scholar 

  • Woodger, J. H., 1924, A Textbook of Morphology and Physiology for Medical Students, Oxford University Press, Oxford.

    Google Scholar 

  • Yamaguchi, M., and Post, R. L., 1982, Inhomogeneity of alpha subunits of (Na,K)ATPase from renal outer medulla, Fed. Proc. 41: 673.

    Google Scholar 

  • Yamaguchi, M., and Tonomura, Y., 1977, Kinetic studies on the ADP—ATP exchange reaction catalyzed by Na’,K+-dependent ATPase. Evidence for the K. S. T. mechanism with two enzyme—ATP complexes and two phosphorylated intermediates of high-energy type, J. Biochem. (Tokyo) 81: 249–260.

    CAS  Google Scholar 

  • Yamaguchi, M., and Tonomura, Y., 1979, Simultaneous binding of three Na+ and two K + ions to Na’,K+-dependent ATPase and changes in its affinities for the ions induced by the formation of a phosphorylated intermediate, J. Biochem. (Tokyo) 86: 509–523.

    CAS  Google Scholar 

  • Yamaguchi, M., and Tonomura, Y., 1980a, Binding of monovalent cations to Na+,K +-dependent ATPase purified from porcine kidney. I. Simultaneous binding of three sodium and two potassium or rubidium ions to the enzyme, J. Biochem. (Tokyo) 88: 1365–1375.

    CAS  Google Scholar 

  • Yamaguchi, M., and Tonomura, Y., 1980b, Binding of monovalent cations to Na+,K+-dependent ATPase purified from porcine kidney. II. Acceleration of transition from a K+-bound form to a Na’-bound form by binding of ATP to a regulatory site of the enzyme, J. Biochem. (Tokyo) 88: 1377–1385.

    CAS  Google Scholar 

  • Yamaguchi, M., and Tonomura, Y., 1980c, Binding of monovalent cations to Na’,K+-dependent ATPase purified from porcine kidney. III. Marked changes in affinities for monovalent cations induced by formation of an ADP-insensitive but not an ADP-sensitive phosphoenzyme, J. Biochem. (Tokyo) 88: 1387–1397.

    CAS  Google Scholar 

  • Yoda, A., and Yoda, S., 1982a, Formation of ADP-sensitive phosphorylated intermediate in the electric eel Na,K-ATPase preparation, Mol. Pharmacol. 22: 693–699.

    PubMed  CAS  Google Scholar 

  • Yoda, A., and Yoda, S., 1982b, Interaction between ouabain and the phosphorylated intermediate of Na,KATPase, Mol. Pharmacol. 22: 700–705.

    PubMed  CAS  Google Scholar 

  • Zambrano, F., Morales, M., Fuentes, N., and Rojas, M., 1981, Sulfatide role in the sodium pump, J. Membr. Biol. 63: 71–75.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Glynn, I.M. (1985). The Na+, K+-Transporting Adenosine Triphosphatase. In: Martonosi, A.N. (eds) The Enzymes of Biological Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4601-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4601-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4603-6

  • Online ISBN: 978-1-4684-4601-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics