Skip to main content
Log in

Homocysteine alters glutamate uptake and Na+,K+-ATPase activity and oxidative status in rats hippocampus: protection by vitamin C

  • Original Paper
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

In the present study we investigate the effect of homocysteine on glutamate uptake, Na+,K+-ATPase, enzymatic antioxidant defenses, as well as reactive species levels in hippocampus of rats. The influence of vitamin C, a classic antioxidant, on the effects elicited by homocysteine was also tested. Results showed that chronic hyperhomocysteinemia decreased glutamate uptake and the activities of Na+,K+-ATPase, catalase and superoxide dismutase in hippocampus of rats. Reactive species levels were increased by chronic homocysteine administration. Concomitant administration of vitamin C significantly prevented these alterations caused by homocysteine. According to our results, it seems possible to suggest that the reduction in glutamate uptake and Na+,K+-ATPase activity may be mediated by oxidative stress, since vitamin C prevented these effects. We suggest that the administration of antioxidants should be considered as an adjuvant therapy to specific diet in homocystinuria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Banhegyi G, Braun L, Csala M, Puskas F, Mandl J (1997) Ascorbate metabolism and its regulation in animals. Free Radic Biol Med 23:793–803

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-die-binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brömme H-J, Zühlke L, Silber R-H, Simm A (2008) DCFH2 interactions with hydroxyl radicals and other oxidants—influence of organic solvents. Exp Gerontol 43:638–644

    Article  PubMed  Google Scholar 

  • Buettner GR, Jurkiewicz BA (1996) Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat Res 145:532–541

    Article  PubMed  CAS  Google Scholar 

  • Cascalheira JF, Parreira MC, Viegas AN, Faria MC, Domingues FC (2008) Serum homocysteine: relationship with circulating levels of cortisol and ascorbate. Ann Nutr Metab 53:67–74

    Article  PubMed  CAS  Google Scholar 

  • Chambers JC, McGregor A, Jean-Marie J, Obeid OA, Kooner JS (1999) Demonstration of rapid onset vascular endothelial dysfunction after hyperhomocysteinemia: an effect reversible with vitamin C therapy. Circulation 99:1156–1160

    PubMed  CAS  Google Scholar 

  • Chan KM, Delfert D et al (1986) A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157:375–380

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Espey MG, Sun AY, Lee JH, Krishna MC, Shacter E et al (2007) Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. Proc Natl Acad Sci USA 104:8749–8754

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Espey MG, Sun AY, Pooput C, Kirk KL, Krishna MC et al (2008) Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc Natl Acad Sci USA 105:11105–11109

    Article  PubMed  CAS  Google Scholar 

  • Collingridge GL, Lester RAJ (1989) Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 40:143–210

    Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  PubMed  CAS  Google Scholar 

  • Dayal S, Arning E, Bottiglieri T, Boger RH, Sigmund CD, Faraci FM, Lentz SR (2004) Cerebral vascular dysfunction mediated by superoxide in hyperhomocysteinemic mice. Stroke 35:1957–1962

    Article  PubMed  CAS  Google Scholar 

  • Englard S, Seifter S (1986) The biochemical functions of ascorbic acid. Annu Rev Nutr 6:365–406

    Article  PubMed  CAS  Google Scholar 

  • Faraci FM, Lentz SR (2004) Hyperhomocysteinemia, oxidative stress, and cerebral vascular dysfunction. Stroke 35:345–347

    Article  PubMed  Google Scholar 

  • Fonnum F (1984) Glutamate: a neurotransmitter in mammalian brain. J Neurochem 42:1–11

    Article  PubMed  CAS  Google Scholar 

  • Fox BA, Cameron AG (1989) In: Arnold E (ed) Food science. Nutrition and Health, London

    Google Scholar 

  • Frizzo ME, Lara DR et al (2002) Guanosine enhances glutamate uptake in brain cortical slices at normal and excitotoxic conditions. Cell Mol Neurobiol 22:353–363

    Article  PubMed  CAS  Google Scholar 

  • Gallucci M, Zanardo A, De Valentin L, Vianello A (2004) Homocysteine in Alzheimer disease and vascular dementia. Arch Gerontol Geriatr Suppl 9:195–200

    Article  PubMed  CAS  Google Scholar 

  • Headley PM, Grillner S (1990) Excitatory amino acids and synaptic transmission: the evidence for a physiological function. Trends Pharmacol Sci 11:205–211

    Article  PubMed  CAS  Google Scholar 

  • Herrmann W, Lorenzl S, Obeid R (2007) Review of the role of hyperhomocysteinemia and B-vitamin deficiency in neurological and psychiatric disorders—current evidence and preliminary recommendations. Fortschr Neurol Psychiatr 75:515–527

    Article  PubMed  CAS  Google Scholar 

  • Hitschke K, Buhler R, Apell HJ, Stark G (1994) Inactivation of the Na+, K+-ATPase by radiation-induced free radicals. Evidence for a radical-chain mechanism. FEBS Lett 353:297–300

    Article  PubMed  CAS  Google Scholar 

  • Kuhn W, Roebroek R, Blom H, Van Oppenraaj D, Przuntek H, Kretschmer A, Buttner T, Woitalla D, Muller T (1998) Elevated plasma levels of homocysteine in Parkinson’s disease. Eur Neurol 40:225–227

    Article  PubMed  CAS  Google Scholar 

  • Lebel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′, 7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  PubMed  CAS  Google Scholar 

  • Lees GJ (1993) Contributory mechanisms in the causation of neurodegenerative disorders. Neuroscience 54:287–322

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA, Kim WK, Choi YB, Kumar S, D’Emilia DM, Rayudu PV, Arnelle DR, Stamler JS (1997) Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proc Natl Acad Sci USA 94:5923–5928

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, RandalL RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–267

    PubMed  CAS  Google Scholar 

  • Marklund SL (1985) Pyrogallol autoxidation. In: Handbook for oxygen radical research. CRC Press, Boca Raton, pp 243–247

  • Matté C, Mackedanz V, Stefanello FM, Scherer EB, Andreazza AC, Zanotto C, Moro AM, Garcia SC, Gonçalves CA, Erdtmann B, Salvador M, Wyse AT (2009a) Chronic hyperhomocysteinemia alters antioxidant defenses and increases DNA damage in brain and blood of rats: protective effect of folic acid. Neurochem Int 54:7–13

    Article  PubMed  Google Scholar 

  • Matté C, Stefanello FM, Mackedanz V, Pederzolli CD, Lamers ML, Dutra-Filho CS, Dos Santos MF, Wyse AT (2009b) Homocysteine induces oxidative stress, inflammatory infiltration, fibrosis and reduces glycogen/glycoprotein content in liver of rats. Int J Dev Neurosci 27:337–344

    Article  PubMed  Google Scholar 

  • Matté C, Mussulini BH, Dos Santos TM, Soares FM, Simão F, Matté A, De Oliveira DL, Salbego CG, Wofchuk ST, Wyse AT (2010) Hyperhomocysteinemia reduces glutamate uptake in parietal cortex of rats. Int J Dev Neurosci 28:183–187

    Article  PubMed  Google Scholar 

  • Mattson MP, Chan SL, Duan W (2002) Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev 82:637–672

    PubMed  CAS  Google Scholar 

  • Mudd SH, Levy HL, Skovby F (2001) Disorders of transsulfuration. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease. McGraw-Hill, New York, pp 1279–1327

    Google Scholar 

  • Pari L, Murugavel P (2007) Diallyl tetrasulfide improves cadmium induced alterations of acetylcholinesterase, ATPases and oxidative stress in brain of rats. Toxicology 234:44–50

    Article  PubMed  CAS  Google Scholar 

  • Peterkofsky B (1991) Ascorbate requirement for hydroxylation and secretion of procollagen: relationship to inhibition of collagen synthesis in scurvy. Am J Clin Nutr 54:1135–1140

    Google Scholar 

  • Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356

    Article  PubMed  CAS  Google Scholar 

  • Potts MB, Koh SE, Whetstone WD, Walker BA, Yoneyama T, Claus CP, Manvelyan HM, Noble-Haeusslein LJ (2006) Traumatic injury to the immature brain: inflammation, oxidative injury, and iron-mediated damage as potential therapeutic targets. NeuroRx 3:143–153

    Article  PubMed  CAS  Google Scholar 

  • Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266:4244–4250

    PubMed  CAS  Google Scholar 

  • Rose RC, Bode AM (1993) Biology of free radical scavangers: an evaluation of ascorbate. FASEB J 7:1135–1142

    PubMed  CAS  Google Scholar 

  • Rose EM, Koo JC, Antflick JE, Ahmed SM, Angers S, Hampson DR (2009) Glutamate transporter coupling to Na,K-ATPase. J Neurosci 29:8143–8155

    Article  PubMed  CAS  Google Scholar 

  • Sachdev PS (2004) Homocysteine and neuropsychiatric disorders. Rev Bras Psiquiatr 26:50–56

    Article  PubMed  Google Scholar 

  • Schalinske KL (2009) Hepatic sulfur amino acid metabolism. In: Masella R, Mazza G (eds) Glutathione and sulfur amino acids in human health and disease. Wiley, Hoboken, pp 73–90

    Chapter  Google Scholar 

  • Scriver CR, Beaudet AL, Sly WS, Valle D (2001) The metabolic & molecular bases of inherited disease. McGraw-Hill, New York

    Google Scholar 

  • Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51:333–355

    Article  PubMed  CAS  Google Scholar 

  • Siems WG, Hapner SJ, van Kuijk FJ (1996) 4-hydroxynonenal inhibits Na+,K+-ATPase. Free Radic Biol Med 20:215–223

    Article  PubMed  CAS  Google Scholar 

  • Sjöström M, Stenström K, Eneling K, Zwiller J, Katz AI, Takemori H, Bertorello AM (2007) SIK1 is part of a cell sodium-sensing network that regulates active sodium transport through a calcium-dependent process. Proc Natl Acad Sci USA 104:16922–16927

    Article  PubMed  Google Scholar 

  • Streck EL, Matte C et al (2002) Reduction of Na+,K+-ATPase activity in hippocampus of rats subjected to chemically induced hyperhomocysteinemia. Neurochem Res 27:1593–1598

    Article  PubMed  CAS  Google Scholar 

  • Streck EL, Vieira PS, Wannmacher CM, Dutra-Filho CS, Wajner M, Wyse AT (2003) In vitro effect of homocysteine on some parameters of oxidative stress in rat hippocampus. Metab Brain Dis 18:147–154

    Article  PubMed  CAS  Google Scholar 

  • Streck EL, Bavaresco CS, Netto CA, Wyse AT (2004) Chronic hyperhomocysteinemia provokes a memory deficit in rats in the Morris water maze task. Behav Brain Res 153:377–381

    Article  PubMed  CAS  Google Scholar 

  • Upchurch GR Jr, Welch GN, Fabian AJ, Freedman JE, Johnson JL Jr, Keaney JF, Loscalzo J (1997) Homocysteine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Biol Chem 272:17012–17017

    Article  PubMed  CAS  Google Scholar 

  • Volterra A, Trotti D, Racagni G (1994) Glutamate uptake is inhibited by arachidonic acid and oxygen radicals via two distinct and additive mechanisms. Mol Pharmacol 46:986–992

    PubMed  CAS  Google Scholar 

  • White AR, Huang X, Jobling MF, Barrow CJ, Beyreuther K, Masters CL, Bush AL, Cappai R (2001) Homocysteine potentiates copper- and amyloid beta peptide-mediated toxicity in primary neuronal cultures possible risk factors in the Alzheimer’s-type neurodegenerative pathways. J Neurochem 76:1509–1520

    Article  PubMed  CAS  Google Scholar 

  • Wyse AT, Streck EL et al (2000) Preconditioning prevents the inhibition of Na+,K+-ATPase activity after brain ischemia. Neurochem Res 25:971–975

    Article  CAS  Google Scholar 

  • Wyse AT, Zugno AI, Streck EL, Matté C, Calcagnotto T, Wannmacher CMD, Wajner M (2002) Inhibition of Na+,K+-ATPase activity in hippocampus of rats subjected to acute administration of homocysteine is prevented by vitamins E and C treatment. Neurochem Res 27:1685–1689

    Article  PubMed  CAS  Google Scholar 

  • Yamamato M, Hara H, Adachi T (2000) Effects of homocysteine on the binding of extracellular-superoxide dismutase to the endothelial cell surface. FEBS Lett 486:159–162

    Article  Google Scholar 

  • Zieminska E, Lazarewicz JW (2006) Excitotoxic neuronal injury in chronic homocysteine neurotoxicity studied in vitro: the role of NMDA and group I metabotropic glutamate receptors. Acta Neurobiol Exp Wars 66:301–309

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—Brazil) and by the FINEP Research Grant “Rede Instituto Brasileiro de Neurociência (IBN-Net) - # 01.06.0842-00”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela T. S. Wyse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Machado, F.R., Ferreira, A.G.K., da Cunha, A.A. et al. Homocysteine alters glutamate uptake and Na+,K+-ATPase activity and oxidative status in rats hippocampus: protection by vitamin C. Metab Brain Dis 26, 61–67 (2011). https://doi.org/10.1007/s11011-011-9232-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-011-9232-3

Keywords

Navigation