Skip to main content
Log in

Petrology, 40Ar/39Ar age, Sr-Nd isotope systematics, and geodynamic significance of an ultrapotassic (lamproitic) dyke with affinities to kamafugite from the easternmost margin of the Bastar Craton, India

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We report the mineralogy, bulk-rock geochemistry, 40Ar/39Ar (whole-rock) age and radiogenic (Sr and Nd) isotope composition of an ultrapotassic dyke from Sakri (Nuapada lamproite field) located at the tectonic contact between the easternmost margin of the Bastar craton and Eastern Ghats Mobile Belt, India. The Sakri dyke has a mineralogy which strongly resembles a lamproite sensu stricto (viz.,Ti-rich phlogopite, Na-poor diopside, Fe-rich sanidine, ulvospinel trend and Sr-rich apatite). However, its bulk-rock major element geochemical characteristics (viz., extreme silica-undersaturated nature) resemble sensu lato kamafugite from Toro Ankole, Uganda, East African Rift, and Alto Paranaiba Province, Brazil. The Sakri dyke also displays certain compositional peculiarities (viz., high degree of evolution of mica composition from phlogopite to biotite, elevated titanium and aluminum in clinopyroxene and significantly lower bulk Mg#) when compared to the ultrapotassic rocks from various Indian cratons. 40Ar/39Ar dating gave a plateau age of 1045 ± 9 Ma which is broadly similar to that of other Mesoproterozoic (i) lamproites from the Bastar and Bundelkhand cratons, and (ii) kimberlites from the Eastern Dharwar craton. Initial bulk-rock Sr (0.705865–0.709024) and Nd (0.511063–0.511154) isotopic ratios reveal involvement of an ‘enriched’ source region with long-term incompatible element enrichment and a depleted mantle (TDM) Nd model age of 2.56 Ga straddling the Archaean-Proterozoic chronostratigraphic boundary. The bulk-rock incompatible trace element ratios (Ta/Yb, Th/Yb, Rb/Ba and Ce/Y) of the Sakri ultrapotassic dyke negate any significant influence of crustal contamination. Small-degree melting (1 to 1.5 %) of a mixed garnet-facies and spinel-facies phlogopite lherzolite can account for its observed REE concentrations. Whereas the emplacement of the Sakri ultrapotassic dyke is related to the amalgamation of the supercontinent of Rodinia, its overlapping geochemical characteristics of lamproite and kamafugite (also displayed by two other lamproites of the Nuapada field at Amlidadar and Parkom) are linked to the emplacement in a unique geological setting at the craton-mobile belt contact and hence of geodynamic significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Altherr R, Meyer H-P, Holl A, Volker F, Alibert C, McCulloch MTMajer V (2004) Geochemical and Sr-Nd-Pb isotopic characteristics of late cenozoic leucite lamproites from the east European alpine belt (Macedonia and Yugoslavia). Contrib Mineral Petrol 147:58–73

    Article  Google Scholar 

  • Araujo ALN, Carlson RW, Gasper JC, Bizzi LA (2001) Petrology of kamafugites and kimberlites from the Alto Paranaiba Alkaline Province, Minas Gerais, Brazil. Contrib Mineral Petrol 142:163–177

    Article  Google Scholar 

  • Bailey DK (1977) Lithosphere control of continental magmatism. J Geol Soc Lond 133:103–106

    Article  Google Scholar 

  • Bailey DK (1993) Petrogenetic implications of the timing of alkaline, carbonatite, and kimberlite igneous activity in Africa. South African J Geol 96:67–74

    Google Scholar 

  • Basu A, Bickford ME (2014) Contributions of zircon U–Pb geochronology to understanding the volcanic and sedimentary history of some Purāna basins, India. J Asian Earth Sci 91:252–262

    Article  Google Scholar 

  • Becker M, Le Roex AP (2006) Geochemistry of South African on- and off-craton Group I and II kimberlites: petrogenesis and source region evaluation. J Petrol 47:673–703

    Article  Google Scholar 

  • Bhadra S, Gupta S, Banerjee M (2004) Structural evolution across the Eastern Ghats Mobile Belt – Bastar craton boundary, India: hot over cold thrusting in an ancient collision zone. J Struct Geol 26:233–245

    Article  Google Scholar 

  • Bickford ME, Basu A, Mukherjee A, Hietpas J, Schieber J, Patranabis-Deb S, Ray RK, Guhey R, Bhattacharya P, Dhang PC (2011) New U–Pb SHRIMP zircon ages of the Dhamda tuff in the Mesoproterozoic Chhattisgarh basin, peninsular India: stratigraphic implications and significance of a 1-Ga thermal–magmatic event. J Geol 119:535–548

    Article  Google Scholar 

  • Boelrijk NAIM (1968) A general formula for “double” isotope dilution analysis. Chem Geol 3:323–325

    Article  Google Scholar 

  • Carlier G, Lorand JP (2003) Petrogenesis of a zirconolite-bearing Mediterranean type lamproite from the Peruvian Altiplano (Andean Cordillera). Lithos 104:15–35

    Article  Google Scholar 

  • Chakrabarti R, Basu AR, Paul DK (2007) Nd-Hf-Sr-Pb isotopes and trace element geochemistry of Proterozoic lamproitesfrom southern India: subducted komatiite in the source. Chem Geol 236:291–302

    Article  Google Scholar 

  • Chalapathi Rao NV (2005) A petrological and geochemical reappraisal of the Mesoproterozoic diamondiferous Majhgawan pipe of Central India: evidence for transitional kimberlite- orangeite (Group- II kimberlite) - lamproite rock type. Mineral Petrol 84:69–106

    Article  Google Scholar 

  • Chalapathi Rao NV (2007) Chelima dykes, Cuddapah Basin, Southern India: a review of the age, petrology, geochemistry and petrogenesis of the worlds’ oldest lamproites. J Geol Soc India 69:523–538

    Google Scholar 

  • Chalapathi Rao NV, Miller JA, Pyle DM, Madhavan V (1996) New Proterozoic K-Ar ages for some kimberlites and lamproites from the Cuddapah Basin and Dharwar craton, southern India. Precambrian Res 79:363–369

    Article  Google Scholar 

  • Chalapathi Rao NV, Gibson SA, Pyle DM, Dickin AP (1998) Contrasting isotopic mantle sources for Proterozoic lamproites and kimberlites from the Cuddapah Basin and Eastern Dharwar craton: implication for Proterozoic mantle heterogeneity beneath southern India. J Geol Soc India 52:683–694

    Google Scholar 

  • Chalapathi Rao NV, Miller JA, Gibson SA, Pyle DM, Madhavan V (1999) Precise 40Ar/39Ar dating of Kotakonda kimberlite and Chelima lamproite, India: implication to the timing of mafic dyke swarm activity in the Eastern Dhawar craton. J Geol Soc India 53:425–432

    Google Scholar 

  • Chalapathi Rao NV, Gibson SA, Pyle D, Dickin AP (2004) Petrogenesis of Proterozoic lamproites and kimberlites from the Cuddapah basin and Dharwar cratons, southern India. J Petrol 45:907–948

    Article  Google Scholar 

  • Chalapathi Rao NV, Kamde G, Kale HG, Dongre A (2010) Mesoproterozoic lamproites from the Krishna Valley, Eastern Dharwar craton, southern India: petrogenesis and diamond prospectivity. Precambrian Res 177:103–130

    Article  Google Scholar 

  • Chalapathi Rao NV, Burgess R, Lehmann B, Mainkar D, Pande, SK, Hari K, Bodhankar N (2011a) 40Ar/39Ar ages of mafic dykes from the Mesoproterozoic Chhattisgarh basin, Bastar craton, Central India: Implication for the origin and spatial extent of the Deccan Large Igneous Province. Lithos 125:994–1005

  • Chalapathi Rao NV, Lehmann B, Mainkar D, Belyatsky B (2011b) Petrogenesis of the end Cretaceous diamondiferous Behradih pipe: implication for mantle plume-lithosphere interaction in the Bastar craton, central India. Contrib Mineral Petrol 161:721–742

    Article  Google Scholar 

  • Chalapathi Rao NV, Wu FY, Srinivas M (2012) Mesoproterozoic emplacement and enriched mantle derivation of the Racherla alkali syenite, Palaeo-Mesoproterozoic Cuddapah basin, southern India: insights from in situ Sr-Nd isotopic analysis on apatite. Geol Soc Lond Spec Publ 365:185–195

    Article  Google Scholar 

  • Chalapathi Rao NV, Wu FY, Mitchell RH, Li LQ, Lehmann B (2013) Mesoproterozoic U-Pb ages, trace element and Sr-Nd isotopic composition of perovskite from kimberlites of the Eastern Dharwar craton, southern India: distinct mantle sources and a widespread 1.1 Ga tectonomagmatic event. Chem Geol 353:48–64

    Article  Google Scholar 

  • Chalapathi Rao NV, Kumar A, Sahoo S, Dongre A, Talukdar D (2014a) Petrology and petrogenesis of Mesoproterozoic lamproites from the Ramadugu field, NW margin of the Cuddapah basin, eastern Dharwar craton, southern India. Lithos 196–197:150–168

    Article  Google Scholar 

  • Chalapathi Rao NV, Srivastava RK, Sinha AK, Ravikant V (2014b) Petrogenesis of Kerguelen-plume linked ultrapotassic intrusives from the Gondwana sedimentary basins, Damodar valley, eastern India. Earth-Sci Rev 136:96–120

    Article  Google Scholar 

  • Chatterjee N, Bhattacharjee S (1998) Formation of tholeiitic intrusives in and around Cuddapah basin, south India and their Gondwana counterparts in East Antarctica and compositional variation in their mantle sources. N Jb Mineral (Abh) 174(1):79–102

    Google Scholar 

  • Chatterjee B, Jha N, Mishra BK, Kumar M (1994) Kodomali kimberlitic diatreme, Raipur district, Madhya Pradesh. Curr Sci 67:50–52

    Google Scholar 

  • Conticelli S (1998) The effect of crustal contamination on ultrapotassic magmas with lamproitic affinity: mineralogical, geochemical and isotope data from the Torre Alfina lavas and xenoliths, Central Italy. Chem Geol 149:51–81

    Article  Google Scholar 

  • Crookshank H (1963) Geology of southern Bastar and Jeypore from the Bailadila range to the Eastern Ghats. Geol Surv India Mem 87:1–150

    Google Scholar 

  • Davies GR, Stolz AZ, Mahotkin IL, Nowell GM, Pearson DG (2006) Trace element and Sr-Pb-Nd-Hf evidence for ancient, fluid-dominated enrichment of the source of Aldan shield lamproites. J Petrol 47:1119–1146

    Article  Google Scholar 

  • Dawson JB, Smith JV (1977) The MARID (mica-amphibole-rutile-ilmenite-diopside) suite of xenoliths in kimberlite. Geochim Cosmochim Acta 41:309–323

    Article  Google Scholar 

  • Dobmeier CJ, Raith MM (2003) Crustal architecture and evolution of the Eastern Ghats Belt, India. Yoshida M, Windley BF, Dasgupta S (eds.). Proterozoic East Gondwana: Supercontinent assembly andbreakup. Geol Soc London Spec Publ 206: 145–167

  • Downes PJ, Wartho J-A, Griffin BJ (2006) Magmatic evolution and ascent history of the Aries micaceous kimberlite, central Kimberley basin, Western Australia: evidence from zoned phlogopite phenocrysts, and UV-laser 40Ar/39Ar analysis of phlogopite-biotite. J Petrol 47:1751–1783

    Article  Google Scholar 

  • Ersoy YE, Palmer MR, Uysal I, Gundogan I (2012) Geochemistry and petrology of the Early Miocene lamproites and related volcanic rocks in the Thrace Basin, NW Anatolia. J Volcanol Geotherm Res 283:143–158

    Article  Google Scholar 

  • Evans NJ, McInnes BIA, McDonald B, Danisik M, Jourdan F, Mayers C, Thern E, Corbett D (2013) Emplacement age and thermal footprint of the diamondiferous Ellandale E9 pipe, Western Australia. Miner Deposita 48:413–421

    Article  Google Scholar 

  • Evensen NM, Hamilton PJ, O’Nions RK (1978) Rare-earth abundances in chondritic meteorites. Geochim Cosmochim Acta 42:1199–1212

    Article  Google Scholar 

  • Foley SF (2008) Rejuvenation and erosion of the cratonic lithosphere. Nat Geosci 1:503–510

    Article  Google Scholar 

  • Foley SF, Venturelli G, Green DH, Toscani L (1987) The ultra-potassic rocks: characteristics, classification and constraints for petrogenetic models. Earth-Sci Rev 24:81–134

    Article  Google Scholar 

  • Foley SF, Link K, Tiberindwa JV, Barifaijo E (2012) Patterns and origin of igneous activity around the Tanzanian craton. J Afr Earth Sci 62:1–18

    Article  Google Scholar 

  • French JE, Heaman LM, Chacko T, Srivastava RK (2007) 1891-1883 Ma Southern Bastar-Cuddapah mafic igneous events, India: a newly recognised large igneous province. Precambrian Res 160:308–322.

  • Gaillard F, Malki M, Marziano GL, Pichavant M, Scaillet B (2008) Carbonatite melts and electrical conductivity in the asthenosphere. Science 322:1363–1365

    Article  Google Scholar 

  • Gale GH, Dabek LB, Fedikow MAF (1997) The application of rare earth element analyses in the exploration for volcanogenic massive sulphide type deposits. Explor Min Geol 6:233–252

    Google Scholar 

  • Ghatak A, Basu AR (2013) Isotopic and trace element geochemistry of alkalic-mafic-ultramafic-carbonatitic complexes and flood basalts in NE India: origin in a heterogeneous Kerguelen plume. Geochim Cosmochim Acta 115:46–72

    Article  Google Scholar 

  • Ghosh JG (2004) 3.56 Ga tonalite in the central part of the Bastar craton, India: oldest Indian date. J Asian Earth Sci 23:359–364

    Article  Google Scholar 

  • Gibson SA, Thompson RN, Leonardos OH, Turner S, Mitchell JG, Dickin AP (1994) The Serra do Bueno potassic diatreme: a possible hypabyssal equivalent of the ultramafic potassic volcanics in the Cretaceous Alto Paranaiba Igneous Province, SE Brazil. Min Mag 58:357–373

    Article  Google Scholar 

  • Gibson SA, Thompson RN, Leonardos OH, Dickin AP, Mitchel JG (1995) The late cretaceous impact of the Trindade mantle plume: evidence from large-volume, mafic, potassic magmatism in SE Brazil. J Petrol 36:189–229

    Article  Google Scholar 

  • Gregory LC, Meert JG, Tamrat E, Malone S, Pandit MK, Pradhan V (2006) A paleomagnetic and geochronologic study of the Majhgawan kimberlite, India: implications for the age of the Upper Vindhyan supergroup. Precambrian Res 149:69–75

    Article  Google Scholar 

  • Guarino V, Wu FY, Lustrino M, Mellus L, Brotzu P, Gomes BDB, Ruberti E, Tassinari CCG, Svisero DP (2013) U-Pb ages, Sr-Nd-isotope geochemistry, and petrogenesis of kimberlites, kamafugites and phlogopite-picrites of the Alto Paranaiba Igneous Province, Brazil. Chem Geol 353:65–82

    Article  Google Scholar 

  • Guo P, Niyu Y, You X (2014) A synthesis and new perspective on the petrogenesis of kamafugites from West Qinling, China, in a global context. J Asian Earth Sci 79:86–96

    Article  Google Scholar 

  • Gupta S, Bhattacharya A, Raith M, Nanda JK (2000) Contrasting pressure-temperature-deformation history across a vestigial craton-mobile belt boundary: the western margin of the Eastern Ghats belt at Deobhog (India). J Metamorph Geol 18:683–697

    Article  Google Scholar 

  • Huang XL, Niu Y, Xu Y, Chen LL, Yang QJ (2010) Mineralogical and geochemical constraints on the petrogenesis of post-collisional potassic and ultrapotassic rocks from Western Yunnan, SW China. J Petrol 51:1617–1654

    Article  Google Scholar 

  • Jagadeesh S, Rai SS (2008) Thickness, composition and evolution of the Indian Precambrian crust inferred from broadband seismological measurements. Precambrian Res 162:4–15

    Article  Google Scholar 

  • Jourdan F, Verati C, Féraud G (2006) Intercalibration of the Hb3gr 40Ar/39Ar dating standard. Chem Geol 231:77–189

    Article  Google Scholar 

  • Karmalkar NR, Duraiswamy RA, Mallika JK, Griffin WL (2014) Mid-Cretaceous lamproite from the Kutch region, Gujrat, India: genesis and tectonic implications. Gondwana Res 26:942–956

    Article  Google Scholar 

  • Kent R, Kelley SP, Pringle MS (1998) Mineralogy and 40Ar/39Ar geochronology of orangeites (Group II kimberlites) from the Damodar valley, eastern India. Min Mag 63:313–323

    Article  Google Scholar 

  • Klemme S, Dalpe C (2003) Trace element partitioning between apatite and carbonatite melt. Am Mineral 88:639–646

    Article  Google Scholar 

  • Konzett J, Armstrong RA, Sweeney RJ, Compston W (1998) The timing of MARID metasomatism in the Kaapvaal mantle: an ion probe study of zircons from MARID xenoliths. Earth Planet Sci Lett 160:133–145

    Article  Google Scholar 

  • Konzett J, Armstrong RA, Gunther G (2000) Modal metasomatism in the Kaapvaal craton lithosphere: constraints on timing and genesis from U-Pb zircon dating of metasomatised peridotites and MARID-type xenoliths. Contrib Mineral Petrol 139:704–719

    Article  Google Scholar 

  • Konzett J, Krenn K, Rubatto D, Hauzenberger C, Stalder R (2014) The formation of saline mantle fluids by open-system crystallization of hydrous silicate-rich vein assemblages- evidence from fluid inclusions and their host phases in MARID xenoliths from the central Kaapvaal craton, South Africa. Geochim Cosmochim Acta 147:1–25

    Article  Google Scholar 

  • Kuehner SM, Edgar AD, Arima M (1981) Petrogenesis of the ultrapotassic rocks from the Leucite Hills, Wyoming. Am Mineral 68:663–677

    Google Scholar 

  • Kumar A, Padma Kumari VM, Dayal AM, Murthy DSN, Gopalan K (1993) Rb-Sr ages of Proterozoic kimberlites of India: evidence for contemporaneous emplacement. Precambrian Res 62:227–237

    Article  Google Scholar 

  • Kumar A, Gopalan K, Rao KRP, Nayak SS (2001) Rb-Sr ages of kimberlites and lamproites from Eastern Eastern Dharwar craton, South India. J Geol Soc India 58:135–142

    Google Scholar 

  • Kumar KV, Frost CD, Frost BR, Chamberlain BR (2007) The Chimakurthi, Errakonda, and Uppalapadu plutons, Eastern Ghats belt, India: an unusual association of tholeiitic and alkaline magmatism. Lithos 97:30–57

    Article  Google Scholar 

  • Lehman B, Mainkar D, Belyatsky B (2006) The Tokapal crater-facies kimberlite system, Chattisgarh, India: Reconnaissance petrography and geochemistry. J Geol Soc India 68: 9--18

  • Lehmann B, Storey C, Mainkar D, Jeffries T (2007) In-situ U-Pb dating of titanite in the Tokapal-Bejripadar kimberlite system, Central India. J Geol Soc India 69:553–556

    Google Scholar 

  • Lehmann B, Burgess R, Frei D, Mainkar D, Chalapathi Rao NV, Heaman LM (2010) Diamondiferous kimberlites in central India synchronous with the Deccan flood basalts. Earth Planet Sci Lett 290:142–149

    Article  Google Scholar 

  • Liu D, Zhao Z, Zhu DC, Niu Y, DePaolo DJ, Harrison TM, Mo X, Dong G, Zhou S, Sun C, Zhang Z, Liu J (2014) Postcollisional potassic and ultrapotassic rocks in southern Tibet: mantle and crustal origins in response to India–Asia collision and convergence. Geochim Cosmochim Acta 143:207–231

    Article  Google Scholar 

  • Ludwig KR (2003) ISOPLOT 3.0—a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 4,70 pp

  • Mainkar D, Lehmann B, Haggerty SE (2004) The crater-facies kimberlite system of Tokapal, Bastar district, Chhattisgarh, India. Lithos 76:201–217

    Article  Google Scholar 

  • Malone SJ, Meert JG, Banerjee DM, Pandit MK, Tamrat E, Kamenova GD, Pradhan VR, Sohl LE (2008) Paleomagnetism and detrital zircon geochronology of the upper Vindhyan sequence, Son Valley and Rajasthan, India: a ca. 1000 Ma closure age for the Purana basins? Precambrian Res 164:137–159

    Article  Google Scholar 

  • Masun K, Sthapak AV, Singh A, Vaidya A, Krishna C (2009) Exploration history and geology of the diamondiferous ultramafic Saptarshi intrusions, Madhya Pradesh, India. Lithos 112:142–154

    Article  Google Scholar 

  • Meert JG (2012) What’s in a name? The Columbia (Paleopangaea/Nuna) supercontinent. Gondwana Res 21:987–993

    Article  Google Scholar 

  • Menzies MA, Kyle P (1990) Continental volcanism: a crust-mantle probe. In: Menzies MA (ed) The continental mantle. Clarendon, Oxford, pp 157–177

    Google Scholar 

  • Miller C, Schuster R, Klötzli U, Frank W, Purtscheller F (1999) Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. J Petrol 40:1399–1424

    Article  Google Scholar 

  • Mirnejad H, Bell K (2006) Origin and source evolution of the Leucite Hills lamproites: evidence from Sr–Nd–Pb–O isotopic compositions. J Petrol 47:2463–2489

    Article  Google Scholar 

  • Mitchell RH (1995) Kimberlites, orangeites and related rocks. Plenum Press, New York, 410p

    Book  Google Scholar 

  • Mitchell RH, Bergman SC (1991) Petrology of lamproites. Plenum Press, New York, 447p

    Book  Google Scholar 

  • Mitchell RH, Edgar AD (2002) Melting experiments on SiO2-rich lamproites to 6.4 GPa and their bearing on the sources of lamproite magmas. Mineral Petrol 74:115–128

    Article  Google Scholar 

  • Mukherjee A, Bickford ME, Hietpas J, Schieber J, Basu A (2012) Implications of a newly dated ca. 1000 Ma rhyolitic tuff in the Indravati basin, Bastar craton, India. J Geol 120:477–485

    Article  Google Scholar 

  • Mukhopadhyay PK, Ghosh S, Rath SC, Swain RB, Shome S (2004) New find of lamproite dykes in Nawapara district, Orissa. Indian Miner 58:183–196

    Google Scholar 

  • Murphy DT, Collerson KD, Kamber BS (2002) Lamproites from Gaussberg, Antarctica: possible transition zone melts of Archaean subducted sediments. J Petrol 43:981–1001

    Article  Google Scholar 

  • Naqvi SM, Rogers JJW (1987) Precambrian geology of India. Oxford University Press, New York, 223p

    Google Scholar 

  • Nédli Zs, TÓth TM (2007) Origin and geodynamic significance of Upper Cretaceous lamprophyres from the Villány Mts (Hungary). Mineral Petrol 90:73–107

  • Nelson DR (1992) Isotopic characteristics of potassic rocks- evidence for the involvement of subducted sediments in the magma. Lithos 28:403–420

    Article  Google Scholar 

  • Newlay SK, Pashine JK (1993) New find of diamond-bearing kimberlite in Raipur district, Madhya Pradesh, India. Curr Sci 65:292–293

    Google Scholar 

  • Osborne I, Sherlock S, Anand M, Argles T (2011) New Ar-Ar ages of southern Indian kimberlites and a lamproite and their geochemical evolution. Precambrian Res 189:91–103

    Article  Google Scholar 

  • Palme H, O’Neill HSC (2003) Cosmochemical estimates of mantle composition. In: Holland H, Turekian KK(eds) Treatise on Geochemistry 2:1–38

  • Patnaik BC, Mishra BP, Maharana RC (2002) A new discovery of diamond bearing pipe rocks in Orissa. Proceedings international conference on diamonds and gemstones, (organized by SAEEG & DGM, Chattisgarh), Raipur, 90

  • Paul DK, Crocket JH, Reddy TAK, Pant NC (2007) Petrology and geochemistry including Platinum group element abundances of the Mesoproterozoic ultramafic (lamproite) rocks of Krishna district, southern India: implications for source rock characteristics and petrogenesis. J Geol Soc India 69:577–596

    Google Scholar 

  • Peccerillo A, Martinotti G (2006) The Western mediterranean lamproitic magmatism: origin and geodynamic significance. Terra Nova. 18:109–117

    Article  Google Scholar 

  • Pisarevsky SA, Biswal TK, Wang XC, Waele BD, Ernst R, Soderlund U, Tait JA, Ratre K, Singh YK, Cleve M (2013) Palaeomagnetic, geochronological and geochemical study of Mesoproterozoic Lakhna Dykes in the Bastar Craton, India: implications for the Mesoproterozoic supercontinent. Lithos 174:125–143

    Article  Google Scholar 

  • Pradhan VR, Meert JG, Pandit MK, Kamenov G, Mondal MEA (2012) Paleomagnetic and geochronologic studies of the mafic dyke swarms of Bundelkhand craton, central India: implications for the tectonic evolution and palaeogeographic reconstructions. Precambrian Res 198–199:51–76

    Article  Google Scholar 

  • Prelević D, Foley SF, Romer RL, Conticelli S (2008) Mediterranean Tertiary lamproites derived from multiple source components in postcollisional geodynamics. Geochimica Cosmochim Acta 72: 2125–2156

  • Prelevic D, Akal C, Romer RL, Foley SF (2010) Lamproites as indicators of accretion and/or shallow subduction in the assembly of Southwestern Anatolia, Turkey. Terra Nova. 22:443–452

    Article  Google Scholar 

  • Rajesh HM, Beukes NJ, Mukhopadhyay J, Gutzmer J, Belyanin GA, Armstrong RA (2009) Evidence for an early Archaean granite from Bastar craton, India. Geol Soc London 166:193–196

    Article  Google Scholar 

  • Ramakrishnan M, Vaidyanadhan R (2008) Geology of India. Geol Soc of India, Bangalore, 556p

    Google Scholar 

  • Reider M, Cavazzini D, Yakonov YSD, Frank-Kamenetskii VA, Gottardi G, Guggenheim S, Koval PV, Muller G, Neiva AMR, Radoslovich EW, Robert JL, Sassi FP, Takeda H, Weiss Z, Wones DR (1998) Nomenclature of micas. Can Mineral 36: 905–912

  • Rock NMS (1991) Lamprophyres. Blackie and Sons, Glasgow, 285p

    Book  Google Scholar 

  • Rogers JJW, Santosh M (2003) Supercontinents in Earth history. Gondwana Res 6:357–368

    Article  Google Scholar 

  • Rogers JJW, Santosh M (2004) Continents and supercontinents. Oxford University Press, New York, 304p

    Google Scholar 

  • Rudnick RL, McDonough WF, Chappell BW (1993) Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth Planet Sci Lett 114:463–476

    Article  Google Scholar 

  • Rukhlov AS, Blinova AI, Pawlowicz JG (2013) Geochemistry, mineralogy and petrology of the Eocene potassic magmatism from the Milk River area, southern Alberta, and Sweet Grass Hills, northern Montana. Chem Geol 353:280–302

    Article  Google Scholar 

  • Sahu N, Gupta T, Patel SC, Khuntia DBK, Behra D, Pande K, DasSK (2013) Petrology of lamproites from the Nuapada lamproite field, Bastar craton, India. In: Pearson DG, Grutter HS, Harris JW, Kjarsgaard BA, O’Brien H, Chalapathi Rao NV, Sparks RSJ (Eds) Proceedings of the X International kimberlite conference, Special Issue of the J Geol Soc of India 1: 137–166

  • Sato K, Katsura T, Ito E (1997) Phase relations of natural phlogopite with and without enstatite up to 8 GPa: implication for mantle metasomatism. Earth Planet Sci Lett 146:511–526

    Article  Google Scholar 

  • Sgarbi PBA, Heaman LM, Gaspar JC (2004) U–Pb perovskite ages for Brazilian kamafugitic rocks: further support for a temporal link to a mantle plume hotspot track. J South Am Earth Sci 16:715–724

    Article  Google Scholar 

  • Sheth HC, Choudhary AK, Bhattacharya S, Cucciniello C, Laishram R, Gurav T (2011) The Chogat-Chamardi subvolcanic complex, Saurashtra, northwestern Deccan Traps: geology, petrochemistry, and petrogenetic evolution. J Asian Earth Sci 41:307–324

    Article  Google Scholar 

  • Smith CB, Haggerty SE, Chatterjee B, Beard AD, Townend R (2013) Kimberlite, lamproite, ultramafic lamprophyre, and carbonatite relationships on the Dharwar Craton, India; an example from the Khaderpet pipe, a diamondiferous ultramafic with associated carbonatite intrusion. Lithos 182–183:102–113

    Article  Google Scholar 

  • Shrivastava SK, Roy A, Thakur KS, Muthuraman K, Khotpal AS (2002) Discovery of lamproites by application of airborne geophysical techniques in eastern part of Bastar craton. Geol Surv India Spec Publ 75:119–127

  • Steiger RH, Jager E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36: 359--362

  • Suryanarayana Rao KV, Kumar C, Kumar A, Nandish V, Swamy RT (2013) Lamproites from the eastern margin of the Bhandara craton, Orissa, India: an exploration case study. In: Pearson DG, Grutter HS, Harris JW, Kjarsgaard BA, O’Brien H, Chalapathi Rao NV, Sparks RSJ (Eds) Proceedings of the X International kimberlite conference, Special Issue of the Journal of the Geological Society of India 2: 129–141

  • Tainton KM, McKenzie D (1994) The generation of kimberlites, lamproites and their source rocks. J Petrol 35:787–817

    Article  Google Scholar 

  • Tappe S, Foley SF, Pearson DG (2003) The kamafugites of Uganda: a mineralogical and geochemical comparison with their Italian and Brazilian analogues. Period di Mineral 72:51–77

    Google Scholar 

  • Tappe S, Jenner GA, Foley SF, Heaman L, Besserer D, Kjarsgaard BA, Ryan B (2004) Torngat ultramafic lamprophyres and their relation to the North Atlantic Alkaline province. Lithos 76:491–518

    Article  Google Scholar 

  • Tappe S, Foley SF, Jenner GA, Kjarsgaard BA (2005) Integrating ultramafic lamprophyres into the IUGS classification of igneous rocks: rationale and implications. J Petrol 46:1893–1900

    Article  Google Scholar 

  • Tappe S, Foley S, Kjarsgaard BA, Romer RL, Heaman LM, Stracke A, Jenner GA (2008) Between carbonatite and lamproite- diamondiferous Torngat ultramafic lamprophyres formed by carbonate fusion melting of cratonic MARID type metasomes. Geochim Cosmochim Acta 72:3258–3286

    Article  Google Scholar 

  • Tappe S, Pearson DG, Prevelic D (2013) Kimberlite, carbonatite, and potassic magmatism as part of the geochemical cycle. Chem Geol 353:1–3

    Article  Google Scholar 

  • Thompson RN (1985) Asthenospheric source of Ugandan ultrapotassic magma? J Geology 93:603–608

    Article  Google Scholar 

  • Thompson RN, Leat PT, Morrison MA, Hendry GL, Gibson SA (1990) Strongly potassic mafic magmas from lithospheric mantle sources during continental extension and heating: evidence from Miocene minettes of northwest Colorado, U.S.A. Earth Planet Sci Lett 98:139–153

    Article  Google Scholar 

  • Thompson RN, Velde D, Leat PT, Morrison MA, Mitchell JG, Dickin AP, Gibson SA (1997) Oligocene lamproite containing an Al-poor, Ti-rich biotite, Middle Park, Northwest Colorado, USA. Min Mag 61:557–572

    Article  Google Scholar 

  • Tommasini S, Avanzinelli, R, Conticelli S (2011) The Th/La and Sm/La conundrum of the Tethyan realm lamproites. Earth Planet Sci Lett 301: 469–478.

  • Toscani L, Contini S, Ferrarini M (1995) Lamproitic rocks from Cabezo Negro de Zeneta: brown micas as a record of magma mixing. Mineral Petrol 55:281–292

    Article  Google Scholar 

  • Upadhyay D, Raith MM, Mezger K, Hammerschmidt K (2006) Mesoproterozoic rift-related alkaline magmatism at Elchuru, Prakasam Alkaline Province, SE India. Lithos 89:447–477

    Article  Google Scholar 

  • Venkateshwarlu M, Chalapathi Rao NV (2013) New palaeomagnetic and rock magnetic results on Mesoproterozoic kimberlites from the Eastern Dharwar craton, southern India: towards constraining India’s position in Rodinia. Precambrian Res 224:588–596

    Article  Google Scholar 

  • Verma SP, Torress-Alvarado IS, Sitelo-Rodriguez ZT (2002) SINCLAS: standard igneous norm and volcanic rock classification system. Comput Geosci 28:711–715

    Article  Google Scholar 

  • Worthing MA, Nasir S (2008) Cambro-Ordovician potassic (alkaline) magmatism in Central Oman: Petrological and geochemical constraints on petrogenesis. Lithos 106:25--38

  • Woolley AR, Bailey DK (2012) The crucial role of lithospheric structure in the generation and release of carbonatites: geological evidence. Min Mag 76:259–270

    Article  Google Scholar 

  • Woolley AR, Bergman SC, Edgar AD, Le Bas MJ, Mitchell RH, Rock NMS, Scott-Smith BH (1996) Classification of lamprophyres, lamproites, kimberlites, and the kalsilitic, melilitic, and leucitic rocks. Can Mineral 34:175–186

    Google Scholar 

  • Yellappa T, Chalapathi Rao NV, Chetty TRK (2010) Occurrence of lamproites at the northern margin of the Indravati basin. J Geol Soc India 75:632–645

    Article  Google Scholar 

  • Yilmaz K (2010) Origin of anorogenic ‘lamproite-like’potassic lavas from the Denizli region in Western Anatolia extensional province, Turkey. Mineral Petrol 99:219–239

    Article  Google Scholar 

  • Zhao Z, Mo X, Dilek Y, Niu Y, De Paolo DJ, Robinson P, Zhu D, Sun C, Dong G, Zhou S, Lou Z, Hou Z (2009) Geochemical and Sr-Nd-Pb-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos 113:190–112

    Article  Google Scholar 

  • Zhu Y, Ogasawara Y, Ayabe T (2002) The mineralogy of the Kokchetav ‘lamproite’:implications for the magma evolution. J Volcanol Geotherm Res 116:35–61

    Article  Google Scholar 

Download references

Acknowledgments

Rex Prider’s seminal contributions to the lamproite petrology are monumental and we deem it a privilege to contribute to this special volume being brought out in his memory. NVCR thanks Head, Department of Geology, BHU, and Alexander von Humboldt Foundation, Germany, for support. Research fellowships to Purnendu Nanda (by DST) and Samarendra Sahoo (by UGC) Atiullah and Ngazipmi Chahong (by CSIR) are thankfully acknowledged. Thoughtful and encouraging reviews by Hugh O’Brien and another, unknown, reviewer and editorial suggestions of A.L. Jaques and Johann Raith are deeply appreciated. Extremely detailed reviews by Andrea Giuliani and an anonymous reviewer on an earlier draft of this manuscript were very helpful and we express our sincere thanks to both of them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Chalapathi Rao.

Additional information

Editorial handling: A. L. Jaques

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, N.V.C., Atiullah, Burgess, R. et al. Petrology, 40Ar/39Ar age, Sr-Nd isotope systematics, and geodynamic significance of an ultrapotassic (lamproitic) dyke with affinities to kamafugite from the easternmost margin of the Bastar Craton, India. Miner Petrol 110, 269–293 (2016). https://doi.org/10.1007/s00710-015-0403-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-015-0403-5

Keywords

Navigation