Skip to main content
Log in

Petrogenesis of the end-Cretaceous diamondiferous Behradih orangeite pipe: implication for mantle plume–lithosphere interaction in the Bastar craton, Central India

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We present mineral chemistry, geochemistry and Sr and Nd isotope data of drillcore samples from the Late Cretaceous (65 Ma), diamondiferous Behradih ultramafic pipe, Bastar craton, Central India, which is emplaced synchronous with the Deccan flood basalt eruption. The rock is affected by pervasive serpentine–talc–carbonate alteration and consists of pelletal lapilli and variously sized olivine and phlogopite macrocrysts, set in a groundmass of abundant clinopyroxene, chrome spinel, apatite, Fe-rich perovskite (<50 μm), zircon, titanite, rutile and calcite. Mineralogical studies identify the Behradih pipe as orangeite (formerly termed as Group II kimberlite) and establish the occurrence of such rocks outside the Kaapvaal craton, southern Africa. As the age of the Behradih orangeite overlaps with that of the main phase of the Deccan flood basalt magmatism, we infer a common tectonomagmatic control vis-a-vis the Deccan-related mantle plume. Trace element ratios and the Nd isotope signatures of the Behradih pipe imply that the Deccan plume has only contributed heat, but not substantial melt, to the Behradih magma with a cause-and-consequence relationship between them. Our study highlights (a) a striking similarity in the genesis of Late Cretaceous orangeites associated with the continental flood basalts in the Kaapvaal and Bastar cratons but related to different mantle plumes and (b) the role of plume–lithosphere interaction in the generation of orangeites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anil Kumar, Heaman LA, Manikyamba C (2007) Mesoproterozoic kimberlites in south India: a possible link to ~1.1 Ga global magmatism. Precamb Res 15:192–204

    Article  Google Scholar 

  • Babu TM (1998) Diamonds in India. Geol Soc India, Bangalore, Economic Geology Series Publication, 332 p

  • Basu AR, Renne PR, Dasgupta DK, Teichmann F, Poreda RJ (1993) Early and late alkali igneous pulses and a high-3He plume origin for the Deccan Flood Basalts. Science 261:902–906

    Article  Google Scholar 

  • Beard AD, Downes H, Hegner E, Sablukov SM, Vetrin VR, Balogh K (1998) Mineralogy and geochemistry of Devonian ultramafic minor intrusions of the southern Kola peninsula, Russia: implications for the petrogenesis of kimberlites and melilitites. Contrib Mineral Petrol 130:288–303

    Article  Google Scholar 

  • Beard AD, Downes H, Hegner E, Sablukov SM (2000) Geochemistry and mineralogy of kimberlites from the Arkhangelsk region, NW Russia: evidence for transitional kimberlite magma types. Lithos 51:47–73

    Article  Google Scholar 

  • Becker M, Le Roex AP (2006) Geochemistry of South African on- and off-craton Group I and II kimberlites: petrogenesis and source region evaluation. J Petrol 47:673–703

    Article  Google Scholar 

  • Becker M, Le Roex AP, Class C (2007) Geochemistry and petrogenesis of South African transition kimberlites located on and off the Kaapvaal Craton. South Afr J Geol 110:631–646

    Article  Google Scholar 

  • Bhadra S, Gupta S, Banerjee M (2004) Structural evolution across the Eastern Ghats Mobile Belt—Bastar craton boundary: hot over cold thrusting in an ancient collision zone. J Struct Geol 26:233–245

    Article  Google Scholar 

  • Campbell IH, Kerr AC (2007) The Great Plume Debate: testing the plume theory. Chem Geol 207:149–152

    Article  Google Scholar 

  • Carlson RW, Pearson DG, James DE (2005) Physical, chemical and chronological characterization of continental mantle. Rev Geophys 43:RG1001. doi:10.1029/2004RG000156

    Article  Google Scholar 

  • Chalapathi Rao NV (2005) A petrological and geochemical reappraisal of the Mesoproterozoic diamondiferous Majhgawan pipe of Central India: evidence for transitional kimberlite- orangeite (Group- II kimberlite)—lamproite rock type. Mineral Petrol 84:69–106

    Article  Google Scholar 

  • Chalapathi Rao NV, Dongre A (2009) Mineralogy and geochemistry of kimberlites NK-2 and KK-6, Narayanpet kimberlite field, Eastern Dharwar craton, southern India: evidence for a transitional (South African) kimberlite signature. Can Mineral 47:855–873

    Google Scholar 

  • Chalapathi Rao NV, Srivastava RK (2009a) Petrology and geochemistry of diamondiferous mesoproterozoic kimberlites from Wajrakarur kimberlite field, Eastern Dharwar Craton, Southern India: genesis and constraints on mantle source regions. Contrib Mineral Petrol 157:245–265

    Article  Google Scholar 

  • Chalapathi Rao NV, Srivastava RK (2009b) A new find of boninitic dyke from the Palaeoproterozoic Dongargarh Super group: Inference for a fossil subduction zone in the Archaean of the Bastar craton, Central India. N Jb Miner Abh 186:271–282

    Article  Google Scholar 

  • Chalapathi Rao NV, Gibson SA, Pyle DM, Dickin AP (1998) Contrasting isotopic mantle sources for Proterozoic lamproites and kimberlites from the Cuddapah Basin & Eastern Dharwar craton: implication for Proterozoic mantle heterogeneity beneath southern India. J Geol Soc India 52:683–694

    Google Scholar 

  • Chalapathi Rao NV, Gibson SA, Pyle DM, Dickin AP (2004) Petrogenesis of Proterozoic lamproites and kimberlites from the Cuddapah Basin and Dharwar Craton, southern India. J Petrol 45:907–948

    Article  Google Scholar 

  • Chalapathi Rao NV, Kamde G, Kale HG, Dongre A (2010a) Mesoproterozoic lamproites from the Krishna Valley, Eastern Dharwar craton, southern India: petrogenesis and diamond prospectivity. Precambrian Res 177:103–130

    Article  Google Scholar 

  • Chalapathi Rao NV, Lehmann B, Burgess R, Pandey SK, Hari, KR (2010b) Geochronological and geochemical evidence for the manifestation of the Deccan Traps and related dykes in the Chhattisgarh basin and Bastar craton, central India: implication for the origin and spatial extent of the Deccan Large Igneous Province. In: Proceedings of the 6th international Dyke conference. Varanasi, India, p 21

  • Chatterjee B, Jha N (1994) Diamondiferous kimberlitic diatremes of Payalikhand, Behradih and Jangra, Raipur district, Madhya Pradesh. Rec Geol Surv India 127(6):240–243

    Google Scholar 

  • Chatterjee B, Smith CB, Jha N, Khan MWY (1995) Kimberlites of the Southeastern Raipur kimberlitic field, Raipur district, Madhya Pradesh, Central India. In: Extended Abstracts Sixth International Kimberlite Conference, Novosibirsk, Russia, pp 106–108

  • Coe N, Le Roex AP, Gurney J, Pearson G, Nowell G (2008) Petrogenesis of the Swartruggens and Star Group II kimberlite dyke swarms, South Africa: constraints from whole rock geochemistry. Contrib Mineral Petrol 156:627–652

    Article  Google Scholar 

  • Cox KG (1989) The role of mantle plumes in the development of continental drainage patterns. Nature 342:873–877

    Article  Google Scholar 

  • Crookshank H (1963) Geology of southern Bastar and Jeypore from the Bailadila range to the Eastern Ghats. Geol Surv India Mem 87:1–150

    Google Scholar 

  • Dawson JB (1987) The kimberlite clan: relationship with olivine and leucite lamproites and inferences for upper mantle metasomatism. Geol Soc London Spec Publ 30:95–107

    Article  Google Scholar 

  • Dawson JB, Smith JV (1977) The MARID suite of (mica-amphibole-rutile-ilmenite- diopside) suite of xenoliths in kimberlite. Geochim Cosmochimica Acta 41:309–323

    Article  Google Scholar 

  • Donnelly CL, Griffin WL, O’Reilly SY, Pearson NJ, Shee SR (2010) The kimberlites and related rocks of the Kuruman kimberlite province, Kaapvaal craton, South Africa. Contrib Mineral Petrol. doi:10.1007/s00410-010-0536-9

  • Duncan RA, Pyle DG (1988) Rapid eruption of the Deccan Traps at the Cretaceous/Tertiary boundary. Nature 333:841–843

    Article  Google Scholar 

  • Evenssen NM, Hamilton PJ, O’Nions RK (1978) Rare earth abundances in chondritic meteorites. Geochim Cosmochim Acta 42:1199–1212

    Article  Google Scholar 

  • Fareeduddin, Pant NC, Neogi S (2006) Petrology of the Kodomali diatreme, Mainpur area, Chhattisgarh, Central India: implications for a Palaeozoic orangeite field. J Geol Soc India 68:19–34

    Google Scholar 

  • Foley SF (1992) Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas. Lithos 28:435–438

    Article  Google Scholar 

  • Foley SF (2008) Rejuvenation and erosion of the cratonic lithosphere. Nat Geosci 1:503–510

    Article  Google Scholar 

  • Foley SF, Venturelli G, Green DH, Toscani L (1987) The ultra-potassic rocks: characteristics, classification and constraints for petrogenetic models. Earth Sci Rev 24:81–134

    Article  Google Scholar 

  • Foley SF, Musselwhite DS, Van der Laan SR (1999) Melt compositions from ultramafic vein assemblages in the lithospheric mantle: a comparison of cratonic and non-cratonic settings. In: Proceedings of the 7th international kimberlite conference (J.B. Dawson volume), pp 238–246

  • Foulger GR, Natland JH (2003) Is “hotspot” volcanism a consequence of plate tectonics? Science 300:921–922

    Article  Google Scholar 

  • Fraser KJ, Hawkesworth CJ (1992) The petrogenesis of group 2 ultrapotassic kimberlites from Finsch Mine, South Africa. Lithos 28:327–345

    Article  Google Scholar 

  • French JE, Heaman LM, Chacko T, Srivastava RK (2007) 1891–1883 Ma Southern Bastar-Cuddapah mafic igneous events, India: a newly recognised large igneous province. Precamb Res 160:308–322

    Article  Google Scholar 

  • Gibson SA, Thompson RN, Leonardos OH, Dickin AP, Mitchell JG (1995) The Late Cretaceous impact of the Trindade mantle plume: evidence from large-volume, mafic, potassic magmatism in SE Brazil. J Petrol 36:189–229

    Google Scholar 

  • Gibson SA, Malarkey J, Dey J (2008) Melt depletion and enrichment beneath the Western Kaapvaal Craton: evidence from Finsch peridotite xenoliths. J Petrol 36:1817–1852

    Article  Google Scholar 

  • Gopalan K, Anil Kumar (2008) Phlogopite K-Ca dating of Narayanpet kimberlites, South India: implications to the discordance between their Rb-Sr, Ar/Ar ages. Precamb Res 167:377–382

    Article  Google Scholar 

  • Gregoire M, Bell DR, Le Roex AP (2003) Garnet lherzolites from the Kaapvaal Craton (South Africa): trace element evidence for a metasomatic history. J Petrol 44:629–657

    Article  Google Scholar 

  • Gregory LC, Meert JG, Pradhan V, Pandit MK, Tamrat E, Malone SJ (2006) A palaeomagnetic and geochronological study of the Upper Vindhyan Super Group. Precamb Res 149:65–75

    Article  Google Scholar 

  • Griffin WL, O’Reilly SY, Natapov LM, Ryan CG (2003) The evolution of lithospheric mantle beneath the Kalahari craton and its margins. Lithos 71:215–242

    Article  Google Scholar 

  • Griffin WL, Natapov LM, O’Reilly SY, van Achterbergh E, Cherenkova AF, Cherenkov VG (2005) The Kharamai kimberlite field, Siberia: modification of the lithospheric mantle by the Siberian Trap event. Lithos 81:167–187

    Article  Google Scholar 

  • Gupta S, Bhattacharya A, Raith M, Nanda JK (2000) Contrasting pressure-temperature-deformation history across a vestigial craton-mobile belt boundary: the western margin of the Eastern Ghats belt at Deobhog (India). J Metam Geol 18:683–697

    Article  Google Scholar 

  • Haggerty SE (1994) Super kimberlites: a geodynamic window to the Earth’s core. Earth Planet Sci Lett 122:57–69

    Article  Google Scholar 

  • Harris M, Le Roex AP, Class C (2004) Geochemistry of the Uintiesberg kimberlite, South Africa: petrogenesis of an off-Craton, group I kimberlite. Lithos 74:149–165

    Article  Google Scholar 

  • Heaman LA, Kjarsgaard BA, Creaser RA (2004) The temporal evolution of North American kimberlites. Lithos 76:377–397

    Article  Google Scholar 

  • Hofmann C, Feraud G, Courtillot V (2000) 40Ar/39Ar dating of mineral separates and whole rocks from the Western Ghats lava pile: further constraints on duration and age of the Deccan Traps. Earth Planet Sci Lett 180:13–27

    Article  Google Scholar 

  • Jagadeesh S, Rai SS (2007) Thickness, composition and evolution of the Indian Precambrian crust inferred from broadband seismological measurements. Precamb Res 162:4–15

    Article  Google Scholar 

  • Jay AE, Widdowson M (2008) Stratigraphy, structure, and volcanology of the south- east Deccan continental flood basalt province: implications for eruptive extent and volumes. J Geol Soc 165:177–188

    Article  Google Scholar 

  • Jha N, Smith CB, Griffin BJ, Chatterjee B, Pooley GD (1995) Diamonds from the kimberlites of Southeastern Rapipur kimberlitic field, Raipur district, Madhya Pradesh, Central India. Ext Abstr Sixth Int Kimberlite Conf Novosibirsk, Russia, 266–268

  • Kaminsky FV, Sablukov SM, Sablukova LI, Channer DMD (2004) Neoproterozoic ‘anomalous’ kimberlites of Guaniamo, Venezuela: mica kimberlites of ‘isotopic transitional’ type. Lithos 76:565–590

    Article  Google Scholar 

  • Kent RW, Kelley SP, Pringle MS (1998) Mineralogy and 40Ar-39Ar geochronology of orangeites (Group II kimberlites) from the Damodar Valley, Eastern India. Mineral Mag 62:313–323

    Article  Google Scholar 

  • Kent RW, Pringle MS, Müller RD, Saunders AD, Ghose NC (2002) 40Ar/39Ar geochronology of the Rajhmahal basalts, India, and their relationship to the Kerguelen Plateau. J Petrol 43:1141–1153

    Article  Google Scholar 

  • Key RM, Bingen B, Barton E, Daudi EXF, Manuel S, Moniz A (2007) Kimberlites in a Karroo graben of Northern Mozambique: tectonic setting, mineralogy and Rb-Sr geochronology. S Afr J Geol 110:111–124

    Article  Google Scholar 

  • King SD, Anderson DL (1995) An alternate mechanism of flood basalt formation. Earth Planet Sci Lett 136:269–279

    Article  Google Scholar 

  • Kiselev S, Vinnik L, Oreshin S, Gupta S, Rai SS, Singh A, Kumar MR, Mohan G (2008) Lithosphere of the Dharwar craton by joint inversion of P and S receiver functions. Geophys J Int 173:1106–1118

  • Knight KB, Renne PR, Halkett A, White N (2003) 40Ar/39Ar dating of the Rajahmundry Traps, Eastern India, and their relationship to Deccan Traps. Earth Planet Sci Lett 208:85–99

    Article  Google Scholar 

  • Kumar P, Yuan X, Kumar R, Kind R, Xuequing L, Chadha RK (2007) The rapid drift of the Indian tectonic plate. Nature 449:894–897

    Article  Google Scholar 

  • Le Roex AP (1986) Geochemical correlation between southern African kimberlites and South Atlantic hotspots. Nature 324:243–245

    Article  Google Scholar 

  • Le Roex AP, Bell DR, Davis P (2003) Petrogenesis of Group I kimberlites from Kimberley, South Africa: evidence from bulk-rock geochemistry. J Petrol 44:2261–2286

    Article  Google Scholar 

  • Lehmann B, Mainkar D, Belyatsky B (2006) The Tokapal crater-facies kimberlite system, Chattisgarh, India: reconnaissance petrography and geochemistry. J Geol Soc India 68:9–18

    Google Scholar 

  • Lehmann B, Storey C, Mainkar D, Jeffries T (2007) In situ U-Pb dating of titanite in the Tokapal-Bejripadar kimberlite system, Central India. J Geol Soc India 69:553–556

    Google Scholar 

  • Lehmann B, Burgess R, Frei D, Belyatsky B, Mainkar D, Chalapathi Rao NV, Heaman LM (2010) Diamondiferous kimberlites in central India synchronous with Deccan flood basalts. Earth Planet Sci Lett 290:142–149

    Article  Google Scholar 

  • Lewis HC (1887) On diamantiferous peridotite and the genesis of the diamond. Geol Mag 4:22–24

    Article  Google Scholar 

  • Mahoney JJ, Duncan RA, Khan W, Gnos E, McCormick GR (2002) Cretaceous volcanic rocks of the South Tethyan suture zone, Pakistan: implications for the Reunion hotspot and Deccan Traps. Earth Planet Sci Lett 203:295–310

    Article  Google Scholar 

  • Mainkar D, Lehmann B (2007) The diamondiferous Behradih kimberlite pipe, Mainpur kimberlite field, Chhattisgarh, india: reconnaissance petrography and geochemistry. J Geol Soc India 69:547–552

    Google Scholar 

  • Mainkar D, Lehmann B, Haggerty SE (2004) The crater-facies kimberlite system of Tokapal, Bastar district, Chhatisgarh, India. Lithos 76:201–217

    Article  Google Scholar 

  • Masun K, Sthapak AV, Singh A, Vaidya A, Krishna C (2009) Exploration history and geology of the diamondiferous ultramafic Saptarshi intrusions, Madhya Pradesh, India Lithos 112s:142–154

  • McCandless TE (1999) Kimberlites: mantle expressions of deep-seated subduction. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) Proceedings of 7th international kimberlite conference (PH Nixon volume), pp 545–549

  • McKenzie D (1989) Some remarks on the movement of small melt fractions in the mantle. Earth Planet Sci Lett 95:53–72

    Article  Google Scholar 

  • Mitchell RH (1986) Kimberlites: mineralogy, geochemistry and petrology. Plenum Press, New York, 442 pp

    Google Scholar 

  • Mitchell RH (1995) Kimberlites, orangeites and related rocks. Plenum Press, New York, 410 pp

    Google Scholar 

  • Mitchell RH (2006) Potassic magmas derived from metasomatised lithospheric mantle: nomenclature and relevance to exploration for diamond-bearing rocks. J Geol Soc India 67:317–327

    Google Scholar 

  • Mitchell RH (2007) Potassic rocks from the Gondwana coal fields of India: closing Pandora’s box of petrological confusion? J Geol Soc India 69:505–512

    Google Scholar 

  • Mitchell RH, Bergman SC (1991) Petrology of lamproites. Plenum Press, New York, 447 p

    Google Scholar 

  • Mitchell RH, Brunfelt AO (1975) Rare earth geochemistry of kimberlite. Phys Chem Earth 9:671–686

    Article  Google Scholar 

  • Mitchell RH, Fareeduddin (2009) Mineralogy of peralkaline lamproites from the Raniganj Coalfield, India. Mineral Mag 73:457–477

    Article  Google Scholar 

  • Morgan WJ (1981) Hot spot tracks and the opening of the Atlantic and Indian Oceans. In: Emiliani C (ed) The Sea. Wiley, New York, pp 443–487

    Google Scholar 

  • Naqvi SM (2005) Geology and evolution of the Indian Plate (from Hadean to Holocene 4 Ga to 4 Ka) New Delhi. Capital Publishers, 450 p

  • Newlay SK, Pashine JK (1993) New find of diamond-bearing kimberlite in Raipur district, Madhya Pradesh, India. Curr Sci 65:292–293

    Google Scholar 

  • Nixon PH (1996) Book review of ‘‘Mitchell RH (1995) Kimberlites, orangeites and related rocks. Plenum Press, New York, 406 pp’’. Mineral Mag 60:358–359

  • Nowell GM, Pearson DG, Bell DR, Carlson RW, Smith CB, Kempton PDM, Noble SR (2004) Hf isotope systematics of kimberlites and their megacrysts: new constraints on their source regions. J Petrol 45:1583–1612

    Article  Google Scholar 

  • Patnaik BC, Mishra BP, Maharana RC (2002) A new discovery of diamond bearing pipe rocks in Orissa. In: Proceedings of international conferences on diamonds & gemstones (organized by SAEEG & DGM, Chattisgarh). Raipur, India, p 90

  • Paton C, Hergt JM, Woodhead JD, Phillips D, Shee SR (2009) Identifying the asthenospheric component of kimberlitic magmas from the Dharwar craton, India. Lithos 112:296–310

    Article  Google Scholar 

  • Paul DK, Crocket JH, Reddy TAK, Pant NC (2007) Petrology and geochemistry including platinum group element abundances of the Mesoproterozoic ultramafic (lamproite) rocks of Krishna district, southern India: implications for source rock characteristics and petrogenesis. J Geol Soc India 69:577–596

    Google Scholar 

  • Rajesh HM, Mukhopadhyay J, Beukes NJ, Gutzmer J, Belyanin GA, Armstrong RA (2009) Evidence for an early Archaean granite from Bastar craton, India. J Geol Soc London 166:193–196

    Article  Google Scholar 

  • Ramakrishnan M, Vaidyanadhan R (2008) Geology of India, 1550 p

  • Ravi Shankar, Nag S, Ganguly A, Rawat BP, Singh GS (2001) Are Majhgawan—Hinota pipe rocks truly Group—I kimberlite? J Earth Syst Sci 110:63–76

    Article  Google Scholar 

  • Raza M, Jafri SH, Alvi SH, Khan MS (1993) Geodynamic evolution of the Indian shield during the Proterozoic: geochemical evidence from mafic volcanic rocks. J Geol Soc India 41:455–469

    Google Scholar 

  • Read GH, Janse AJA (2009) Diamonds: exploration, mines and marketing. Lithos 112:1–9

    Article  Google Scholar 

  • Ringwood AR, Kesson SE, Hibberson W, Ware N (1992) Origin of kimberlites and their related magmas. Earth Planet Sci Lett 113:521–538

    Article  Google Scholar 

  • Roeder PL, Schulze DJ (2008) Crystallization of groundmass spinel in kimberlite. J Petrol 49:1473–1495

    Article  Google Scholar 

  • Scott-Smith BH, Skinner EMW (1984) A new look at the Prairie Creek Arkansas. In: Kornprobst J (ed) Kimberlites 1: kimberlites and related rocks. Proceedings of 3rd Internat Kimberlite Conferences, Developments in Petrology. Elsevier, Amsterdam 1:255–283

  • Shee SR, Bristow JW, Bell DR, Smith CB, Allsopp HL, Shee PB (1989) The petrology of kimberlites, related rocks and associated mantle xenoliths from the Kuruman Province, South Africa. Geol Soc Austral Spec Publ 14:60–82

    Google Scholar 

  • Sheth HC (2005) From Deccan to Reunion: no trace of mantle plume. In: Foulger GR, Natland JH, Presnell DC, Anderson DL (eds) Plates, plumes and paradigms. Geol Soc Amer Spl Paper 388:477–501

  • Sheth HC (2007) Plume-related regional pre-volcanic uplift in the Deccan Traps: absence of evidence, evidence of absence. In: Foulger GR, Judy DM (eds) Plates, plumes and planetary processes. Geol Soc Amer Spl Paper 430:785–813

  • Simonetti A, Goldstein SL, Schmidberger SS, Viladkar SG (1998) Geochemical and Nd, Pb, and Sr isotope data of Deccan alkaline complexes: inferences on mantle sources and plume-lithosphere interaction. J Petrol 39:1847–1864

    Article  Google Scholar 

  • Skinner EMW (1989) Contrasting Group I and II kimberlite petrology: towards a genetic model for kimberlites. Geol Soc Austr Spec Publ 14:528–544

    Google Scholar 

  • Smith CB (1983) Pb, Sr and Nd isotopic evidences for sources of southern African Cretaceous kimberlites. Nature 304:51–54

    Article  Google Scholar 

  • Srivastava RK, Gautam GC (2009) Precambrian mafic magmatism in the Bastar craton, Central India. J Geol Soc India 73:52–72

    Article  Google Scholar 

  • Srivastava RK, Chalapathi Rao NV, Sinha AK (2009) Cretaceous potassic intrusives with affinities to aillikites from Jharia area: Magmatic expression of metasomatically veined and thinned lithospheric mantle beneath Singhbhum craton, Eastern India. Lithos 112s:407–418

    Google Scholar 

  • Subba Rao DV, Khan MWY, Sridhar DN, Nagaraju K (2007) A new find of younger dolerite dykes with continental flood basalt affinity from the Meso-Neoproterozoic Chhattisgarh Basin, Bastar craton, India. J Geol Soc India 69:80–84

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins. Geol Soc London Spec Publ 42:313–345

  • Tainton KM, McKenzie D (1994) The generation of kimberlites, lamproites and their source rocks. J Petrol 35:787–817

    Google Scholar 

  • Tappe S, Jenner GA, Foley SF, Heaman LM, Besserer D, Kjarsgaard BA, Ryan B (2004) Torngat ultramafic lamprophyres and their relation to the North Atlantic Alkaline Province. Lithos 76:491–518

    Article  Google Scholar 

  • Tappe S, Foley SF, Jenner GA, Kjarsgaard BA (2005) Integrating ultramafic lamprophyres into the IUGS classification of igneous rocks: rational and implications. J Petrol 46:1893–1900

    Article  Google Scholar 

  • Tappe S, Foley SF, Jenner GA, Heaman LM, Kjarsgaard BA, Romer RL, Stracke A, Joyce N, Hoefs J (2006) Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic craton. J Petrol 47:1261–1315

    Article  Google Scholar 

  • Tappe S, Foley SF, Kjarsgaard BA, Romer RL, Heaman LM, Stracke A, Jenner GA (2008) Between carbonatite and lamproite—diamondiferous Torngat ultramafic lamprophyres formed by carbonate fusion melting of cratonic MARID-type metasomes. Geochim Cosmochim Acta 72:3258–3286

    Article  Google Scholar 

  • Taylor WR, Tompkins LA, Haggerty SE (1994) Comparative geochemistry of West African kimberlites: evidence for a micaceous kimberlite end-member of sub lithospheric origin. Geochim Cosmochim Acta 58:4017–4037

    Article  Google Scholar 

  • Ulmer P, Sweeney RJ (2002) Generation and differentiation of Group II kimberlites: constraints from a high-pressure experimental study to 10 GPa. Geochim Cosmochim Acta 66:2139–2215

    Article  Google Scholar 

  • Upadhyay D, Scherer EE, Mezger K (2009) 142Nd evidence for an enriched Hadean reservoir in cratonic roots. Nature 459:1118–1121

    Article  Google Scholar 

  • White RS, McKenzie D (1995) Mantle plumes and flood basalts. J Geophys Res 100:17543–17585

    Article  Google Scholar 

  • Wilson L, Head JW (2007) An integrated model of kimberlite ascent and eruption. Nature 447:53–57

    Article  Google Scholar 

  • Yang YH, Wu FY, Wilde S, Liu XM, Zhang YB (2009) In situ perovskite Sr-Nd isotopic constraints on the petrogenesis of the Ordovician mengyin kimberlites in the North China Craton. Chem Geol 264:24–42

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Government of Chhattisgarh for providing access to the drillcore samples. Constructive reviews by Sebastian Tappe and an anonymous reviewer and editorial suggestions by Jochen Hoefs have significantly improved the contents of this paper, and we express our sincere thanks to them. NVCR thanks the Head, Centre of Advanced Study in Geology, Banaras Hindu University, Varanasi, for his encouragement and for providing facilities and the Humboldt Foundation, Bonn, Germany, for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Chalapathi Rao.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

410_2010_559_MOESM1_ESM.tif

Supplementary Figure S1(A) K2O (wt%) vs TiO2 (wt%) plot for the Behradih pipe samples. The fields for kimberlite and orangeite are from Mitchell (1995). Data for WKF and NKF are from Chalapathi Rao et al. (2004) and Chalapathi Rao and Srivastava (2009a). Data of the Behradih samples from Mainkar and Lehmann (2007). (B) Zr versus Nb (ppm) co-variation diagram for the Behradih pipe. Data sources: Majhgawan pipe (Chalapathi Rao 2005); WKF and NKF kimberlites (Chalapathi Rao et al. 2004; Chalapathi Rao and Srivastava 2009a); Krishna and Cuddapah lamproites are from Chalapathi Rao et al. (2009); other fields are from Taylor et al. (1994). Data of the Behradih samples from Mainkar and Lehmann (2007). Symbols are the same as in Online electronic supplementary Fig.S1A (TIFF 24216 kb)

410_2010_559_MOESM2_ESM.tif

Supplementary Figure S2(A) (La/Sm)N vs (Ho/Lu)N of the Behradih samples compared with those of NKF and WKF (data from Chalapathi Rao et al. 2004, and Chalapathi Rao and Srivastava 2009a). Symbols are the same as in Fig.7A. (B) Nb/Y vs SiO2 (wt%) plot illustrating the elevated Nb/Y ratio (low degree of partial melting) of the Behradih samples, similar to kimberlites from the Dharwar craton. Data of WKF, NKF and Cuddapah lamproites are from Chalapathi Rao et al. (2004), Chalapathi Rao and Srivastava (2009a); data for the Jharia aillikites is from Srivastava et al. (2009). The other fields are taken from Beard et al. (1998) (TIFF 27055 kb)

Supplementary material 3 (DOC 75 kb)

Supplementary material 4 (DOC 61 kb)

Supplementary material 5 (DOC 46 kb)

Supplementary material 6 (DOC 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chalapathi Rao, N.V., Lehmann, B., Mainkar, D. et al. Petrogenesis of the end-Cretaceous diamondiferous Behradih orangeite pipe: implication for mantle plume–lithosphere interaction in the Bastar craton, Central India. Contrib Mineral Petrol 161, 721–742 (2011). https://doi.org/10.1007/s00410-010-0559-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-010-0559-2

Keywords

Navigation