Skip to main content

Advertisement

Log in

Experimental metasomatism of monazite and xenotime: mineral stability, REE mobility and fluid composition

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In this study a Th-bearing monazite from a Brazil beach sand, a low Th monazite from a Malawi carbonatite, and a xenotime from a pegmatite in northern Pakistan were experimentally metasomatised in a series of common metamorphic and igneous fluids at 600°C/500 MPa and 900°C/1000 MPa. Fluids included H2O, NaCl, and KCl brines, CaF2 + H2O, 1m and 2m HCl, 1m and 2m H2SO4, 1m NaOH, and Na2Si2O5 + H2O. The monazite show a variety of responses to the fluids ranging from no reaction (KCl + H2O) to small compositional changes and partial replacement of the monazite grain rim by Th-enriched monazite in the NaOH and (Na2Si2O5 + H2O) experiments respectively. The other acid and brine fluids induced varying degrees of partial dissolution in the monazite and xenotime, but no compositional alteration. Partial replacement of monazite grain rims by Th-enriched monazite occurred only in the alkaline fluids as the result of a coupled dissolution-reprecipitation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altmaier M, Neck V, Fanghanel T (2004) Solubility and colloid formation of Th(IV) in concentrated NaCl and MgCl2 solution. Radiochim Acta 92:537–543

    Article  Google Scholar 

  • Arraes-Mescoff R, Roy-Barman M, Coppola L, Souhaut M, Tachikawa K, Jeandel C, Sempéré R, Yoro C (2001) The behavior of Al, Mn, Ba, Sr, REE and Th isotopes during in vitro degradation of large marine particles. Mar Chem 73(1):1–19

    Article  Google Scholar 

  • Ayers JC, Loflin M, Miller CF, Barton MD, Coath C (2004) Dating fluid infiltration using monazite. In Wanty RB, Seal II RR, (eds) Proceedings of the Eleventh International Symposium on Water-Rock Interaction, Vol. 1, p. 247–251. A.A. Balkema Publishers

  • Ayers JC, Loflin M, Miller CF, Barton MD, Coath CD (2006) In situ oxygen isotope analysis of monazite as a monitor of fluid infiltration during contact metamorphism: Birch Creek Pluton aureole, White Mountains, eastern California. Geology 34(8):653–656

    Article  Google Scholar 

  • Bea F, Montero P (1999) Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: an example from the Kinzigite Formation of Ivrea-Verbano, NW Italy. Geochim Cosmochim Acta 63:1133–1153

    Article  Google Scholar 

  • Berger A, Gnos E, Janots E, Fernandez A, Giese J (2008) Formation and composition of rhabdophane, bastnaesite and hydrated thorium minerals during alteration: implications for geochronology and low-temperature processes. Chem Geol 254:238–248

    Article  Google Scholar 

  • Budzyń B, Hetherington CJ, Williams ML, Jercinovic MJ, Michalik M (2007) Monazite stability as a function of the silicate mineral assemblage in the presence of fluid. Geophys Res Abstr 9:1607–7962, gra/EGU2007-A-00100

    Google Scholar 

  • Cetiner ZS, Wood SA, Gammons CH (2005) The aqueous geochemistry of the rare earth elements. Part XIV. The solubility of rare earth element phosphates from 23 to 150°C. Chem Geol 217:147–169

    Article  Google Scholar 

  • Cherniak DJ (2006) Pb and rare earth element diffusion in xenotime. Lithos 88:1–14

    Article  Google Scholar 

  • Cherniak DJ, Pyle JM (2008) The diffusion in monazite. Chem Geol 256(1–2):52–61

    Article  Google Scholar 

  • Cherniak DJ, Watson EB, Harrison TM, Grove M (2000) Pb diffusion in moanzite: a progress report on a combined RBS/SIMS study. EOS Trans Amer Geophy Union 81:S25

    Google Scholar 

  • Cressey G, Wall F, Cressey BA (1999) Differential REE uptake by sector growth of monazite. Mineral Mag 63(3):813–828

    Article  Google Scholar 

  • Cuney M, Mathieu R (2000) Extreme light rare earth element mobilization by diagenetic fluids in the geological environment of the Oklo natural reactor zones, Franceville Basin, Gabon. Geology 28:743–746

    Article  Google Scholar 

  • Dumond G, McLean N, Williams ML, Jercinovic MJ, Bowring SA (2008) High-resolution dating of granite petrogenesis and deformation in a lower crustal shear zone: Athabasca granulite terrane, western Canadian Shield. Chem Geol 254:175–196

    Article  Google Scholar 

  • Ewing RC, Wang L (2003) Phosphates as nuclear waste forms. In: Kohn ML, Rakovan J, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological, and materials importance, vol 48. Mineralogical Society of America, Washington

    Google Scholar 

  • Fan QH, Wu WS, Song XP, Xu JZ, Hu J, Niu ZW (2008) Effect of humic acid, fulvic acid, pH and temperature on the sorption-desorption of Th(IV) on attapulgite. Radiochim Acta 96(3):159–165

    Article  Google Scholar 

  • Finch CB, Harris LA, Clark GW (1964) The thorite-huttonite phase transformation as determined by growth of synthetic thorite and huttonite single crystals. Am Mineral 49:782–785

    Google Scholar 

  • Förster H-J (1998) The chemical composition of REE-Y-Th-U-rich accessory minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region, Germany, Part II: Xenotime. Am Mineral 83:1302–1315

    Google Scholar 

  • Förster HJ (2006) Composition and origin of intermediate solid solutions in the system thorite-xenotime-zircon-coffinite. Lithos 88(1–4):35–55

    Article  Google Scholar 

  • Fulignati P, Gioncada A, Sbrana A (1999) Rare-earth element (REE) behaviour in the alteration facies of the active mgmatic-hydrothermal system of Vulcano (Aeolian Islands, Italy). J Volcanol Geotherm Res 88(4):325–342

    Article  Google Scholar 

  • Gardes E, Jaoul O, Montel J-M, Seydoux-Guillaume A-M, Wirth R (2006) Pb diffusion in monazite: an experimental study of Pb2+ + Th4+ ↔ 2Nd3+ interdiffusion. Geochim Cosmochim Acta 70(9):2325

    Article  Google Scholar 

  • Garson MS (1966) Carbonatites in Malawi. In: Tuttle OF, Gittins J (eds) Carbonatites. Wiley, London, pp 33–71

    Google Scholar 

  • Garson MS, Campbell-Smith W (1965) Carbonatite and agglomeratic vents in the Western Shire Valley. In, vol Memoir no. 3. Geological Survey of Malawi

  • Gieré R (1993) Transport and deposition of REE in H2S-rich fluids: evidence from accessory mineral assemblages. Chem Geol 110:251–268

    Article  Google Scholar 

  • Gonzalez-Alvarez I, Agnieszka Kusiak M, Kerrich R (2006) A trace element and chemical Th-U total Pb dating study in the lower Belt-Purcell Supergroup. Western North America: provenance and diagenetic implications. Chem Geol 230(1–2):140–160

    Article  Google Scholar 

  • Harlov DE, Förster H-J (2002) High-grade fluid metasomatism on both a local and a regional scale: the Seward Peninsula, Alaska, and the Val Strona di Omegna, Ivrea-Verbano Zone, Northern Italy. Part II: phosphate mineral chemistry. J Petrol 43(5):801–824

    Article  Google Scholar 

  • Harlov DE, Förster H-J (2003) Fluid-induced nucleation of (Y + REE)-phosphate minerals within apatite: nature and experiment. Part II. Fluroapatite. Am Mineral 88:1209–1229

    Google Scholar 

  • Harlov DE, Milke R (2002) Stability of corundum + quartz relative to kyanite and sillimanite at high temperature and pressure. Am Mineral 87:424–32

    Google Scholar 

  • Harlov DE, Andersson UB, Förster H-J, Nyström JO, Dulski P, Broman C (2002a) Apatite-monazite relations in the Kiirunavaara magnetite-apatite ore, northern Sweden. Chem Geol 191:47–72

    Article  Google Scholar 

  • Harlov DE, Förster H-J, Nijland TG (2002b) Fluid-induced nucleation of (Y + REE)-phosphate minerals within apatite: nature and experiment. Part I. Chlorapatite. Am Mineral 87:245–261

    Google Scholar 

  • Harlov DE, Wirth R, Förster H-J (2005) An experimental study of dissolution-reprecipitation in fluorapatite: fluid infilitration and the formation of monazite. Contrib Mineral Petrol 150:268–286

    Article  Google Scholar 

  • Harlov DE, Wirth R, Hetherington CJ (2007) The relative stability of monazite and huttonite at 300–900°C and 200–1000 MPa: metasomatism and the propagation of metastable mineral phases. Am Mineral 92:1652–1664

    Article  Google Scholar 

  • Hetherington CJ, Harlov DE (2008) Metasomatic thorite and uraninite inclusions in xenotime and monazite from granitic pegmatites, Hidra anorthosite massif, southwestern Norway: mechanics and fluid chemistry. Am Mineral 93:806–820

    Article  Google Scholar 

  • Hetherington CJ, Jercinovic MJ, Williams ML, Mahan K (2008) Understanding geologic processes with xenotime: composition, chronology, and a protocol for electron probe microanalysis. Chem Geol 254:133–147

    Article  Google Scholar 

  • Holt DN (1965) The Kangankunde Hill rare earth prospect. Results of an economic investigation. Malawi Ministry of Natural Resources, Geological Survey Department, Bulletin 20. Government Press, Zomba, p 130

    Google Scholar 

  • Janots E, Brunet F, Goffé B, Poinssot C, Burchard M, Cemic L (2007) Thermochemistry of monazite-(La) and dissakisite-(La) implications for monazite and allanite stability in metapelites. Contrib Mineral Petrol 154:1–14

    Article  Google Scholar 

  • Janots E, Engi M, Berger A, Allaz J, Schwarz J-O, Spandler C (2008) Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite-monazite xenotime phase relations from 250 to 610°C. J Meta Geol 26:509–526

    Article  Google Scholar 

  • Johannes W (1973) Eine vereinfachte Piston-Zylinder-Apparatur hoher Genauigkeit. Neues Jahrbuch fur Mineralogie 7/8:337–351

    Google Scholar 

  • Johannes W, Bell PM, Mao HK, Boettcher AL, Chipman EW, Hays JF, Newton RC, Siefert F (1971) An interlaboratory comparison of piston cylinder pressure calibration using the albite-breakdown reaction. Contrib Mineral Petrol 32:24–38

    Article  Google Scholar 

  • Kositcin N, McNaughton NJ, Neal J, Griffen BJ, Fletcher IR, Groves DI, Rasmussen B (2003) Textural and geochemical discrimination between xenotime of different origin in the Archaean Witwatersrand Basin, South Africa. Geochim Cosmochim Acta 67(4):709–731

    Article  Google Scholar 

  • Krenn E, Ustaszewski K, Finger F (2008) Detrital and newly formed metamorphic monazite in amphibolites-facies metapelites from the Motajica Massif. Bosnia Chem Geol 254:164–174

    Article  Google Scholar 

  • Mahan K, Williams M, Flowers R, Jercinovic M, Baldwin J, Bowring S (2006a) Geochronological constraints on the Legs Lake shear zone with implications for regional exhumation of lower continental crust, western Churchill Province, Canadian Shield. Contrib Mineral and Petrol 152(2):223

    Article  Google Scholar 

  • Mahan KH, Goncalves P, Williams ML, Jercinovic MJ (2006b) Dating metamorphic reactions and fluid flow: application to exhumation of high-P granulites in a crustal-scale shear zone, western Canadian Shield. J Meta Geol 24(3):193–217

    Article  Google Scholar 

  • Mathieu R, Zetterstrom L, Cuney M, Gauthier-Laraye F, Hidaka H (2001) Alteration of monazite and zircon and lead migration as geochemical tracers of fluid paleocirculations around the Oklo-Okélobondo and Bangombé natural nuclear reaction zones (Franceville basin, Gabon). Chem Geol 171(3–4):147–171

    Article  Google Scholar 

  • Mazeina L, Ushakov SV, Navrotsky A, Boatner LA (2005) Formation enthalpy of ThSiO4 and enthalpy of the thorite → huttonite phase transition. Geochim Cosmochim Acta 69(19):4675–4683

    Article  Google Scholar 

  • Ménard O, Advocat T, Ambrosi JP, Michard A (1998) Behaviour of actinides (Th, U, Np and Pu) and rare earths (La, Ce and Nd) during aqueous leaching of a nuclear glass under geological disposal conditions. Appl Geochem 13(1):105–126

    Article  Google Scholar 

  • Montel J-M, Foret S, Veschambre M, Nicollet C, Provost A (1996) Electron microprobe dating of monazite. Chem Geol 131:37–53

    Article  Google Scholar 

  • Neck V, Altmaier M, Müller R, Bauer A, Fanghänel T, Kim J-I (2003) Solubility of crystalline thorium dioxide. Radiochim Acta 91(5):253–262

    Article  Google Scholar 

  • Oelkers E, Poitrasson F (2002) An experimental study of the dissolution stoichiometry and rates of a natural monazite as a function of temperature from 50 to 230°C and pH from 1.5 to 10. Chem Geol 191:73–87

    Article  Google Scholar 

  • Östhols E, Bruno J, Grenthe I (1994) On the influence of carbonate on mineral dissolution: III. The solubility of microcrystalline ThO2 in CO2-H2O media. Geochim Cosmochim Acta 58(2):613–623

    Article  Google Scholar 

  • Poitrasson F, Chenery S, Bland DJ (1996) Contrasted monazite hydrothermal alteration mechanisms and their geochemical implications. Earth Planet Sci Lett 145:79–96

    Article  Google Scholar 

  • Poitrasson F, Chenery S, Shepherd TJ (2000) Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration: implications for U-Th-Pb geochronology and nuclear ceramics. Geochim Cosmochim Acta 64(19):3283–3297

    Article  Google Scholar 

  • Poitrasson F, Oelkers E, Schott J, Montel J-M (2004) Experimental determination of synthetic NdPO4 monazite end-member solubility in water from 21°C to 300°C: implications for rare earth element mobility in crustal fluids. Geochim Cosmochim Acta 68(10):2207

    Article  Google Scholar 

  • Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66:689–708

    Article  Google Scholar 

  • Putnis A, Putnis C, Giampaolo C (1994) The microstructure of analcime phenocrysts in ingneous rocks. Euro J Mineral 6:627–632

    Google Scholar 

  • Putnis A, Hinrichs R, Putnis CV, Golla-Schindler U, Collins LG (2007) Hematite in porous redclouded feldspars: evidence of large-scale crustal fluid-rock interaction. Lithos 95(1):10–18

    Article  Google Scholar 

  • Rai D, Moore DS, Oakes CS, Yui M (2000) Thermodynamic model for the solubility of thorium dioxide in the Na + -Cl–OH–H2O system at 23°C and 90°C. Radiochim Acta 88(5):297

    Article  Google Scholar 

  • Rasmussen B (1996) Early-diagenetic REE-phosphate minerals (florencite, gorceixite, crandallite, and xenotime) in marine sandstones: a major sink for oceanic phosphorus. Am J Sci 296:601–632

    Google Scholar 

  • Rasmussen B, Muhling JR (2007) Monazite begets monazite: evidence for dissolution of detrital monazite and reprecipitation of syntectonic monazite during low-grade regional metamorphism. Contrib Mineral Petrol 154(6):675–689

    Article  Google Scholar 

  • Schmidt C, Rickers K, Bilderback DH, Huang R (2007) In situ synchrotron-radiation XRF study of REE phosphate dissolution in aqueous fluids to 800°C. Lithos 95:87–102

    Article  Google Scholar 

  • Seydoux AM, Montel JM (1997) Experimental determination of the thorite-huttonite phase transition. Terra Nova 9(1):421

    Google Scholar 

  • Sun H, Semkow TM (1998) Mobilization of thorium, radium and radon radionuclides in ground water by successive alpha-recoils. J Hydrol 205(1–2):126–136

    Article  Google Scholar 

  • Teufel S, Heinrich CA (1997) Partial resetting of the U-Pb isotope system in monazite through hydrothermal experiments: an SEM and U-Pb isotope study. Chem Geol 137:273–281

    Article  Google Scholar 

  • Tropper P, Manning CE, Harlov DE (2008) Solubility of CePO4 and YPO4 in H2O, H2O-NaCl, H2O-NaF and H2O-albite fluids at 800°C and 1 GPa: implications for REE transport during subduction-zone metasomatism. Eos Trans AGU, 89(53), Fall Meet. Suppl. Abstract V31D–2184

  • Tropper P, Manning CE, Harlov DE (2009) Preliminary solubility measurements of CePO4 and YPO4 in H2O-NaCl-NaF and H2O-Albite at 800°C and 1 GPa: implications for the transport of REE during high-grade metamorphism. Geophys Res Abstr 11 EGU2009-4212, 2009

    Google Scholar 

  • van Middlesworth PE, Wood SA (1998) The aqueous geochemistry of the rare earth elements and yttrium. Part 7. REE, Th and U contents in thermal springs associated with the Idaho batholith. Appl Geochem 13(7):861–884

    Article  Google Scholar 

  • Wall F, Mariano AN (1996) Rare earth minerals in carbonatites: a discussion centred on the Kangankunde Carbonatite, Malawi. In: Jones AP, Wall F, Williams CT (eds) The mineralogical series (7), rare earth minerals, chemistry, origin and ore deposits, vol 7. Chapman and Hall, London, pp 193–225

    Google Scholar 

  • Williams ML, Jercinovic MJ, Hetherington CJ (2007) Microprobe monazite geochronology: understanding geologic processes by integrating composition and chronology. Annu Rev Earth Planet Sci 35(1):137–175

    Article  Google Scholar 

  • Williams-Jones AE, Samson IM, Olivo GR (2000) The genesis of hydrothermal fluorite-REE deposits in the Gallinas Mountains, New Mexico. Econ Geol 95:327–341

    Article  Google Scholar 

  • Wood SA (1990a) The aqueous geochemistry of the rare-earth elements and yttrium 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chem Geol 82:159–186

    Article  Google Scholar 

  • Wood SA (1990b) The aqueous geochemistry of the rare-earth elements and yttrium 2. Theoretical predictions of speciation in hydrothermal solutions to 350°C at saturation water vapor pressure. Chem Geol 88:99–125

    Article  Google Scholar 

  • Woolley AR (1991) The Chilwa alkaline igneous province of Malawi: a review. In: Kampunzu AB, Lubala RT (eds) Magmatism in extensional structural settings, The Phanerozoic African plate. Springer-Verlag, Berlin, pp 377–409

    Google Scholar 

  • Zhu XK, O’Nions RK (1999) Monazite chemical composition: some implications for monazite geochronology. Contrib Mineral and Petrol 137:351–363

    Article  Google Scholar 

Download references

Acknowledgements

CJH thanks Michael Jercinovic and Michael Williams for financial support and use of the electron microprobe at the University of Massachusetts-Amherst and Wilhelm Heinrich for financial support to visit the GeoForschungsZentrum and conduct the experimental work. Helga Kemnitz is acknowledged for her help with the scanning electron microscope at the GeoForschungsZentrum. We also thank two anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Callum J. Hetherington.

Additional information

Editorial handling: R. Milke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hetherington, C.J., Harlov, D.E. & Budzyń, B. Experimental metasomatism of monazite and xenotime: mineral stability, REE mobility and fluid composition. Miner Petrol 99, 165–184 (2010). https://doi.org/10.1007/s00710-010-0110-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-010-0110-1

Keywords

Navigation