Skip to main content
Log in

Thermochemistry of monazite-(La) and dissakisite-(La): implications for monazite and allanite stability in metapelites

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Thermochemical properties have been either measured or estimated for synthetic monazite, LaPO4, and dissakisite, CaLaMgAl2(SiO4)3OH, the Mg-equivalent of allanite. A dissakisite formation enthalpy of −6,976.5 ± 10.0 kJ mol−1 was derived from high-temperature drop-solution measurements in lead borate at 975 K. A third-law entropy value of 104.9 ± 1.6 J mol−1 K−1 was retrieved from low-temperature heat capacity (C p) measured on synthetic LaPO4 with an adiabatic calorimeter in the 30–300 K range. The C p values of lanthanum phases were measured in the 143–723 K range by differential scanning calorimetry. In this study, La(OH)3 appeared as suitable for drop solution in lead borate and represents an attractive alternative to La2O3. Pseudo-sections were calculated with the THERIAK-DOMINO software using the thermochemical data retrieved here for a simplified metapelitic composition (La = ∑REE + Y) and considering monazite and Fe-free epidotes along the dissakisite-clinozoïsite join, as the only REE-bearing minerals. Calculation shows a stability window for dissakisite-clinozoïsite epidotes (T between 250 and 550°C and P between 1 and 16 kbar), included in a wide monazite field. The PT extension of this stability window depends on the bulk-rock Ca-content. Assuming that synthetic LaPO4 and dissakisite-(La) are good analogues of natural monazite and allanite, these results are consistent with the REE-mineralogy sequence observed in metapelites, where (1) monazite is found to be stable below 250°C, (2) around 250–450°C, depending on the pressure, allanite forms at the expense of monazite and (3) towards amphibolite conditions, monazite reappears at the expense of allanite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2. J Petrol 29:445–522

    Google Scholar 

  • Berman RG, Brown TH (1985) Heat capacity of minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2: representation, estimation, and high temperature extrapolation. Contrib Mineral Petrol 89:168–183

    Article  Google Scholar 

  • Bertoldi C, Benisek A, Cemic L, Dachs E (2001) The heat capacity of two natural chlorite group minerals derived from differential scanning calorimetry. Phys Chem Mineral 28(5):332–336

    Article  Google Scholar 

  • Bolech M, Janssen F, Booij AS, Cordfunke EHP (1996) The standard molar enthalpies of formation of β-La2Si2O7 and β-Ce2Si2O7. J Chem Thermodyn 28(11):1319–1324

    Article  Google Scholar 

  • Bollinger L, Janots E (2006) Evidence for Mio-Pliocene retrograde monazites from the lesser Himalaya metamorphic series in Far Western Nepal. Eur J Mineral 18:289–297

    Article  Google Scholar 

  • Bosenick A, Geiger CA, Cemic L (1996) Heat capacity measurements of synthetic pyrope-grossular garnets between 320 and 1000 K by differential scanning calorimetry. Geochim Cosmochim Acta 60(17):3215–3227

    Article  Google Scholar 

  • Broska I, Siman P (1998) The breakdown of monazite in the West-Carpathian Veporic orthogneisses and tatric granites. Geol Carpath 49(3):161

    Google Scholar 

  • Brunet F, Morineau D, Schmid-Beurmann P (2004) Heat capacity of lazulite, MgAl2(PO4)2(OH)2, from 35 to 298 K and a (− V) value for P2O5 to estimate phosphate entropy. Mineral Mag 68(1):123–134

    Article  Google Scholar 

  • Bularzik J, Navrotsky A, Dicarlo J, Bringley J, Scott B, Trail S (1991) Energetics of La2 − x Sr x CuO4 − y solid-solutions (0.0 < x < 1.0). J Solid State Chem 93(2):418–429

    Article  Google Scholar 

  • Cetiner ZS, Wood SA, Gammons CH (2005) The aqueous geochemistry of the rare earth elements. Part XIV. The solubility of rare earth element phosphates from 23 to 150°C. Chem Geol 217(1–2):147–169

    Article  Google Scholar 

  • Chai LA, Navrotsky A (1993) Thermochemistry of carbonate-pyroxene equilibria. Contrib Mineral Petrol 114(2):139–147

    Article  Google Scholar 

  • Chirico RD, Westrum EF (1980) Thermophysics of the lanthanide hydroxides. 1. Heat-capacities of La(OH)3, Gd(OH)3, and Eu(OH)3 from near 5 K to 350 K lattice and schottky contributions. J Chem Thermodyn 12(1):71–85

    Article  Google Scholar 

  • Cordfunke EHP, Konings RJM (2001a) The enthalpies of formation of lanthanide compounds III. Ln2O3(cr). Thermochim Acta 375(1–2):65–79

    Article  Google Scholar 

  • Cordfunke EHP, Konings RJM (2001b) The enthalpies of formation of lanthanide compounds II. Ln3+ (aq). Thermochim Acta 375(1–2):51–64

    Article  Google Scholar 

  • Decapitani C, Brown TH (1987) The computation of chemical-equilibrium in complex-systems containing nonideal solutions. Geochim Cosmochim Acta 51(10):2639

    Article  Google Scholar 

  • Diakonov II, Tagirov BR, Ragnarsdottir KV (1998) Standard thermodynamic properties and heat capacity equations for rare earth element hydroxides. I. La(OH)3(s) and Nd(OH)3(s). Comparison of thermochemical and solubility data. Radiochim Acta 81(2):107–116

    Google Scholar 

  • Ditmars DA, Douglas TB (1971) Measurement of relative enthalpy of pure α-Al2O3 (NBS heat capacity and enthalpy standard reference material no 720) from 273 to 1173 K. J Res Nat Bur Stand A Phys Chem 75(5):401–420

    Google Scholar 

  • Evans J, Zalasiewicz J (1996) U–Pb, Pb–Pb and Sm–Nd dating of authigenic monazite: Implications for the diagenetic evolution of the Welsh Basin. Earth Planet Sci Lett 144(3–4):421–433

    Article  Google Scholar 

  • Evans JA, Zalasiewicz JA, Fletcher I, Rasmussen B, Pearce NJG (2002) Dating diagenetic monazite in mudrocks: constraining the oil window? J Geol Soc Lond 159:619–622

    Article  Google Scholar 

  • Finger F, Broska I, Roberts MP, Schermaier A (1998) Replacement of primary monazite by apatite-allanite-epidote coronas in an amphibolite facies granite gneiss from the eastern Alps. Am Mineral 83(3–4):248–258

    Google Scholar 

  • Foster GL, Parrish RR (2003) Metamorphic monazite and the generation of P-T-t paths. In: Vance D, Müller W, Villa IM (eds) Geochronology: linking the isotopic record with petrology and textures, vol 220. Geological Society, London, Special Publications, pp 25–47

  • Franz G, Andrehs G, Rhede D (1996) Crystal chemistry of monazite and xenotime from Saxothuringian–Moldanubian metapelites, NE Bavaria, Germany. Eur J Mineral 8(5):1097–1118

    Google Scholar 

  • Frey M (1969) Die Metamorphose des Keupers vom Tafeljuras bis zum Lukmanier-Gebiet, PhD thesis, Bern, p 160

  • Furukawa GT, Douglas TB, McCoskey RE, Ginnings DC (1956) Thermal properties of aluminum oxide from 0 K to 1200 K. J Res Nat Bur Stand 57(2):67–82

    Google Scholar 

  • Giere R, Sorensen SS (2004) Allanite and other REE-rich epidote-group minerals. In: Epidotes, Rev Mineral Geochem 56, pp 431–493

  • Grevel KD, Schoenitz M, Skrok V, Navrotsky A, Schreyer W (2001) Thermodynamic data of lawsonite and zoisite in the system CaO–Al2O3–SiO2–H2O based on experimental phase equilibria and calorimetric work. Contrib Mineral Petrol 142(3):298–308

    Google Scholar 

  • Haas JR, Shock EL, Sassani DC (1995) Rare-earth elements in hydrothermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare-earth elements at high-pressures and temperatures. Geochim Cosmochim Acta 59(21):4329–4350

    Article  Google Scholar 

  • Harrison TM, Catlos EJ, Montel JM (2002) U–Th–Pb dating of phosphate minerals. In: Phosphates: Geochemical, geobiological, and materials importance. Rev Mineral Geochem 48, pp 523–558

  • Haskin LA, Haskin MA, Frey FA, Wildeman TR (1968) Relative and absolute terrestrial abundances of the rare earths. In: Ahrens LH (eds) Origin and distribution of the elements, Pergamon, New York, pp 889–911

    Google Scholar 

  • Helean KB, Navrotsky A (2002) Oxide melt solution calorimetry of rare earth oxides - Techniques, problems, cross-checks, successes. J Therm Anal Calorim 69(3):751–771

    Article  Google Scholar 

  • Hermann J (2002) Allanite: thorium and light rare earth element carrier in subducted crust. Chem Geol 192(3–4):289

    Article  Google Scholar 

  • Holland TJB (1989) Dependence of entropy on volume for silicate and oxide minerals: A review and a predictive model. Am Mineral 74(1–2):5–13

    Google Scholar 

  • Hutcheon I, Bloch J, De Caritat P, Shevalier M, Abercrombie H, Longstaffe F (1998) What is the cause of potassium enrichment in shales? In: Shales and mudstones; II, Petrography, petrophysics, geochemistry, and economic geology, E. Schweizervartsche Verlagsbuchhandlung, Stuttgart, pp 107–128

  • Janots E, Negro F, Brunet F, Goffe B, Engi M, Bouybaouene ML (2006) Evolution of the REE mineralogy in HP-LT metapelites of the Sebtide complex, Rif, Morocco: Monazite stability and geochronology. Lithos 87(3–4):214–234

    Article  Google Scholar 

  • Johnson JW, Oelkers EH, Helgeson HC (1992) Supcrt92—a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 bar to 5000 bar and 0°C to 1000°C. Comput Geosci 18(7):899–947

    Article  Google Scholar 

  • Kahl WA, Maresch WV (2001) Enthalpies of formation of tremolite and talc by high-temperature solution calorimetry—a consistent picture. Am Mineral 86(11–12):1345–1357

    Google Scholar 

  • Kingsbury JA, Miller CF, Wooden JL, Harrison TM (1993) Monazite paragenesis and U–Pb systematics in rocks of the eastern Mojave desert, California, USA—implications for thermochronometry. Chem Geol 110(1–3):147–167

    Article  Google Scholar 

  • Kiseleva I, Navrotsky A, Belitsky IA, Fursenko BA (1996) Thermochemistry and phase equilibria in calcium zeolites. Am Mineral 81(5–6):658–667

    Google Scholar 

  • Krenn E, Finger F (2004) Metamorphic formation of Sr-apatite and Sr-bearing monazite in a high-pressure rock from the Bohemian Massif. Am Mineral 89(8–9):1323–1329

    Google Scholar 

  • Lanzirotti A, Hanson GN (1996) Geochronology and geochemistry of multiple generations of monazite from the Wepawaug Schist, Connecticut, USA: implications for monazite stability in metamorphic rocks. Contrib Mineral Petrol 125(4):332–340

    Article  Google Scholar 

  • Maier CG, Kelley KK (1932) An equation for the representation of high temperature heat content data. J Am Chem Soc 54:3243–3246

    Article  Google Scholar 

  • McHale JM, Navrotsky A, Kirkpatrick RJ (1998) Nanocrystalline spinel from freeze-dried nitrates: synthesis, energetics of produce formation, and cation distribution. Chem Mater 10(4):1083

    Article  Google Scholar 

  • Nagy G, Draganits E, Demeny A, Panto G, Arkai P (2002) Genesis and transformations of monazite, florencite and rhabdophane during medium grade metamorphism: examples from the Sopron Hills, Eastern Alps. Chem Geol 191(1–3):25–46

    Article  Google Scholar 

  • Navrotsky A (1997) Progress and new directions in high temperature calorimetry revisited. Phys Chem Mineral 24(3):222–241

    Article  Google Scholar 

  • Navrotsky A, Rapp RP, Smelik E, Burnley P, Circone S, Chai L, Bose K (1994) The behaviour of H2O and CO2 in high-temperature lead borate solution calorimetry of volatile-bearing phases. Am Mineral 79(11–12):1099–1109

    Google Scholar 

  • Oberli F, Meier M, Berger A, Rosenberg CL, Giere R (2004) U–Th–Pb and Th230/U238 disequilibrium isotope systematics: precise accessory mineral chronology and melt evolution tracing in the Alpine Bergell intrusion. Geochim Cosmochim Acta 68(11):2543–2560

    Article  Google Scholar 

  • Pan Y (1997) Zircon- and monazite-forming metamorphic reactions at Manitouwadge, Ontario. Can Mineral 35:105–118

    Google Scholar 

  • Poitrasson F, Oelkers E, Schott J, Montel JM (2004) Experimental determination of synthetic NdPO4 monazite end-member solubility in water from 21°C to 300°C: Implications for rare earth element mobility in crustal fluids. Geochim Cosmochim Acta 68(10):2207–2221

    Article  Google Scholar 

  • Pyle JM, Spear FS (2003) Four generations of accessory-phase growth in low-pressure migmatites from SW New Hampshire. Am Mineral 88(2–3):338–351

    Google Scholar 

  • Rai D, Felmy AR, Yui M (2003) Thermodynamic model for the solubility of NdPO4(c) in the aqueous Na+−H+−H2PO4 −HPO 2−4 −OH−Cl−H2O system. J Radioanal Nucl Ch 256(1):37–43

    Article  Google Scholar 

  • Rasmussen B (1996) Early-diagenetic REE-phosphate minerals (florencite, gorceixite, crandallite, and xenotime) in marine sandstones: a major sink for oceanic phosphorus. Am J Sci 296(6):601–632

    Article  Google Scholar 

  • Rasmussen B, Fletcher IR, McNaughton NJ (2001) Dating low-grade metamorphic events by SHRIMP U–Pb analysis of monazite in shales. Geology 29(10):963–966

    Article  Google Scholar 

  • Robie RA, Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. In: U.S. Geological Survey Bulletin 2131, Government Printing Office, Washington, 461 p

  • Robie RA, Hemingway BS, Fisher JR (1979) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. In: U.S. Geological Survey Bulletin 1452, U.S. Government Printing Office, Washington, 454 p

  • Rouse RC, Peacor DR (1993) The crystal-structure of Dissakisite-(Ce), the Mg analogue of allanite-(Ce). Can Mineral 31:153–157

    Google Scholar 

  • Sawka WN, Banfield JF, Chappell BW (1986) A weathering-related origin of widespread monazite in S-type granites. Geochim Cosmochim Acta 50(1):171–175

    Article  Google Scholar 

  • Schnelle W, Fischer R, Gmelin E (2001) Specific heat capacity and thermal conductivity of NdGaO3 and LaAlO3 single crystals at low temperatures. J Phys D Appl Phys 34(6):846–851

    Article  Google Scholar 

  • Smith HA, Barreiro B (1990) Monazite U–Pb dating of staurolite grade metamorphism in pelitic schists. Contrib Mineral Petrol 105(5):602–615

    Article  Google Scholar 

  • Spear FS, Pyle JM (2002) Apatite, monazite, and xenotime in metamorphic rocks. In: Phosphates: Geochemical, geobiological, and materials importance, Rev Mineral Geochem 48, pp 293–335

  • Thiriet C, Konings RJM, Javorsky P, Wastin F (2004) The heat capacity of cerium orthophosphate CePO4, the synthetic analogue of monazite. Phys Chem Mineral 31(6):347–352

    Google Scholar 

  • Thiriet C, Konings RJM, Javorsky P, Magnani N, Wastin F (2005) The low temperature heat capacity of LaPO4 and GdPO4, the thermodynamic functions of the monazite-type LnPO4 series. J Chem Thermodyn 37(2):131

    Article  Google Scholar 

  • Tsagareishvili DS, Gvelesia GG, Orlovskii VP, Belyaevskaya TK, Rep’ko VP (1972) Enthalpies and specific-heats of lanthanum, neodymium and yttrium orthophosphate at high temperature. Izv Akad Nauk SSSR Neorg Mater 8:1790–1793

    Google Scholar 

  • Ushakov SV, Helean KB, Navrotsky A, Boatner LA (2001) Thermochemistry of rare-earth orthophosphates. J Mater Res 16(9):2623–2633

    Google Scholar 

  • Ushakov SV, Navrotsky A, Farmer JM, Boatner LA (2004) Thermochemistry of the alkali rare-earth double phosphates, A3RE(PO4)2. J Mater Res 19(7):2165–2175

    Article  Google Scholar 

  • Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL (1982) The NBS tables of chemical and thermodynamic properties. J Phys Chem Ref Data 11(2):392p

    Google Scholar 

  • Wing BA, Ferry JM, Harrison TM (2003) Prograde destruction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology. Contrib Mineral Petrol 145(2):228–250

    Google Scholar 

  • Wood SA, Palmer DA, Wesolowski DJ, Bénézeth P (2002) The aqueous geochemistry of the rare earth elements and yttrium. Part XI. The solubility of Nd(OH)3 and hydrolysis of Nd3+ from 30 to 290°C at saturated water vapor pressure with in-situ pHm measurement. In: Hellmann R and Wood SA (eds) Water–rock interactions, ore deposits, and environmental geochemistry: a tribute to David A. Crerar, Geochemical Society Special Publication, vol 7, pp 229–256

Download references

Acknowledgments

This research project was financially supported by the NOMADE programme (CEA-CNRS) and by the SNF 20020–101826/1. We are grateful to J.-M. Montel who kindly provided us with synthetic LaPO4 monazite. Assistance from J. Allaz and O. Schwarz (THERIAK-DOMINO software), N. Catel (wet chemical analyses), K.D. Grevel (HT drop-solution calorimetry), P. Kluge (DSC measurements), G. Marolleau (high-pressure devices) are gratefully acknowledged. We also thank C. Chopin and T. Parra for fruitful discussions. Constructive comments of S.V. Ushakov and an anonymous reviewer have significantly improved the quality of the manuscript and are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Janots.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

410_2006_176_MOESM1_ESM.doc

Appendix

Appendix

Table 6 Mineral formulae and abbreviations

About this article

Cite this article

Janots, E., Brunet, F., Goffé, B. et al. Thermochemistry of monazite-(La) and dissakisite-(La): implications for monazite and allanite stability in metapelites. Contrib Mineral Petrol 154, 1–14 (2007). https://doi.org/10.1007/s00410-006-0176-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-006-0176-2

Keywords

Navigation