Skip to main content
Log in

Plume-related mantle source of super-large rare metal deposits from the Lovozero and Khibina massifs on the Kola Peninsula, Eastern part of Baltic Shield: Sr, Nd and Hf isotope systematics

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The two world’s largest complexes of highly alkaline nepheline syenites and related rare metal loparite and eudialyte deposits, the Khibina and Lovozero massifs, occur in the central part of the Kola Peninsula. We measured for the first time in situ the trace element concentrations and the Sr, Nd and Hf isotope ratios by LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometer) in loparite, eudialyte an in some other pegmatitic minerals. The results are in aggreement with the whole rock Sr and Nd isotope which suggests the formation of these superlarge rare metal deposits in a magmatic closed system. The initial Hf, Sr, Nd isotope ratios are similar to the isotopic signatures of OIB indicating depleted mantle as a source. This leads to the suggestion that the origin of these gigantic alkaline intrusions is connected to a deep seated mantle source—possibly to a lower mantle plume. The required combination of a depleted mantle and high rare metal enrichment in the source can be explained by the input of incompatible elements by metasomatising melts/fluids into the zones of alkaline magma generation shortly before the partial melting event (to avoid ingrowth of radiogenic isotopes). The minerals belovite and pyrochlore from the pegmatites are abnormally high in 87Sr /86Sr ratios. This may be explained by closed system isotope evolution as a result of a significant increase in Rb/Sr during the evolution of the peralkaline magma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arndt NT, Christensen U (1992) The role of lithospheric mantle in continental flood volcanism: thermal and geochemical constraints. J Geophys Res 97:10967–10981

    Article  Google Scholar 

  • Arzamastsev AA, Arzamastseva LV, Glaznev VN, Raevskiy YA (1998) The deep structure and composition of the lower units of Khibiny and Lovozero complexes, Kola Peninsula, Russia: a petrological and geophysical model. Petrologiya 6:478–496

    Google Scholar 

  • Bell K (2001) Carbonatites: relationship to mantle-plume activity. In: Ernst RE, Buchan KL (ed) Mantle plumes: the identification through time. Geological Society of America. Special Paper, 352:267–290

  • Bell K, Rukhlov AS (2004) Carbonatites from the Kola Alkaline Province: origin, evolution and source characteristics. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine. Mineral Soc Ser 10:433–468

    Google Scholar 

  • Bizimis M, Salters V, Dawson JB (2003) The brevity of carbonatite sources in the mantle:evidence from Hf isotopes. Contrib Miner Petrol 145:281–300

    Article  Google Scholar 

  • Bizimis M, Griselin M, Lassiter J, Salters V, Sen G (2007) Ancient recycled mantle lithosphere in Hawaiian plume: Osmium-Hafnium isotopic evidence from peridotite mantle xenoliths. Earth Planet Sci Lett 257:259–273

    Article  Google Scholar 

  • Blichert-Toft J, Albarede F (1997) The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett 148:243–258

    Article  Google Scholar 

  • Blusztajn J, Hegner E (2002) Osmium isotopic systematics of melilitites from the Tertiary Central European Volcanic province in SW Germany. Chem Geol 189:91–103

    Article  Google Scholar 

  • Bradshaw TK, Hawkesworth CJ, Gallagher K (1993) Basaltic volcanism in the Southern Basin and range: no role for a mantle plume. Earth Planet Sci Lett 116:45–62

    Article  Google Scholar 

  • Carlson RW, Czamanske G, Fedorenko V, Ilupin I (2006) A comparison of Siberian meimechites and kimberlites: implications for the source of high-Mg alkalic magmas and flood basalts. Geochem Geophys Geosyst 7:Q11014. doi:10.1029/2006, GC001342

    Article  Google Scholar 

  • Dunworth E, Bell K (2001) The Turuy massif, Kola Peninsula, Russia: isotopic and geochemical evidence for multi-source evolution. J Petrology 42:377–405

    Article  Google Scholar 

  • Eliseev NA, Fedorov EE (1953) Lovozero pluton and related ore deposits. Transactions of Laboratory of Precambrian rocks 1:308. In Russian

  • Galakhov AV (1975) Petrology of Khibina alkaline massif. Nauka, 256 p. In Russian

  • Gerasimovsky VI, Volkov VP, Kogarko LN, Polyakov AI, Balashov U (1966) Geochemistry of Lovozero alkaline massif. Part I. Geology and Petrology. Part 2. Geochemistry. Translated 1968 by Brown D.A. Australian National University Press. Canberra: 224 pp. and 369 pp

  • Hart SR, Hauri E, Oschmann LA, Whitehead JA (1992) Mantle plumes and entrainment: isotopic evidence. Science 256:517–520

    Article  Google Scholar 

  • Ivanikov VV, Rukhlov AS, Bell K (1998) Magmatic evolution of the melilitite-carbonatite-nephelinite dyke series of the Turiy peninsula (Kandalaksha Bay, White Sea, Russia). J Petrol 39:2043–2059

    Article  Google Scholar 

  • Janney PE, le Roex AP, Carlson RW, Viljoen KS (2002) A chemical and multi-isotope study of the western Cape olivine melilitite province, South Africa: implications for the sources of kimberlites and the origin of the HIMU signature in Africa. J Petrol 43:2339–2370

    Article  Google Scholar 

  • Jung S, Phander J, Brugman G, Strake A (2006) Sources of primitive alkaline volcanic rocks from the Central European Volcanic Province (Rhőn, Germany) inferred from Hf, Os and Pb isotopes. Contrib Mineral Petrol 150:546–559

    Article  Google Scholar 

  • Kogarko LN (1978) Microcomponents as indicator of differentiation of alkaline magmatic series. In: Ahrens H (ed) Origin and distribution of the elements. Pergamon, Oxford, pp 217–222

    Google Scholar 

  • Kogarko LN (1990) Ore-forming potential of alkaline magmas. Lithos 26:165–175

    Article  Google Scholar 

  • Kogarko LN, Kononova VA, Orlova MP, Woolley AR (1995) Alkaline rocks and carbonatites of the world: Part 2. Former USSR. Chapman and Hall, London, p 225

    Google Scholar 

  • Kogarko LN, Williams CT, Woolley AR (2002) Chemical evolution and petrogenetic implications of loparite in layered, agpaitic Lovozero complex, Kola Peninsula, Russia. Mineral and Petrol 74:1–24

    Article  Google Scholar 

  • Kogarko LN (2006) Enriched reservours and alkaline magmatism. mechanisms, time, and depth of formation. Geochem Int 44

  • Kogarko LN, Zartman RE (2007) A Pb isotope investigation of the Guli massif, Maymecha-Kotuy alkaline-ultramafic complex, Siberian flood basalt province, Polar Siberia. Mineral Petrol 89:113–132

    Article  Google Scholar 

  • Kramm U (1993) Mantle component of carbonatites from the Kola Alkaline Province, Russia and Finland: aNd-Sr study. Eur J Mineral 5:985–989

    Google Scholar 

  • Kramm U, Kogarko LN (1994) Nd and Sr isotope signatures of the Khibina and Lovozero agpaitic centers, Kola Alkaline Province, Russia. Lithos 32:225–242

    Article  Google Scholar 

  • Kramm U, Kogarko LN, Kononova VA, Vartiainen H (1993) The Kola Alkaline Province of the CIS and Finland: precise Rb-Sr ages define 380–360 Ma age range for all magmatism. Lithos 30:33–44

    Article  Google Scholar 

  • Lazarov M, Brey GP, Weyer S (2009) Time steps of depletion and enrichment in the Kaapvaa craton as recorded by subcalcic garnets from Finch (SA). Earth Planet Sci Lett 279:1–10

    Article  Google Scholar 

  • Lightfoot PC, Naldrett AJ, Gorbachev NS, Doherty W, Fedorenko VA (1990) Geochemistry of the Siberian Traps of the Noril’sk with implications for the relative contributions of crust and mantle to flood basalt magmatism area. Contrib Mineral Petrol 104:631–644

    Article  Google Scholar 

  • Marty B, Tolstikhin I, Kamensky IL, Nivin V, Balaganskaya E, Zimmermann JL (1998) Plume-derived rare gases in 380 Ma carbonatites from the Kola region (Russia) and the argon isotopic composition in the deep mantle. Earth Planet Sci Lett 164:179–192

    Article  Google Scholar 

  • Nowell GM, Pearson DG, Bell DR, Carlson RW, Smith CB, Kempton PD, Noble SR (2004) Hf isotope systematics of kimberlites and their megacrysts: new constraints on their source regions. J Petrol 45:1583–1612

    Article  Google Scholar 

  • Patchett PS, Tatsumoto M (1980) Hafnium isotope variation in oceanic basalts. Geophys Res Lett 7:1077–1080

    Article  Google Scholar 

  • Patchett PJ, Kouvo O, Hedge CE, Tatsumoto M (1981) Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes. Contrib Mineral Petrol 78:279–297

    Article  Google Scholar 

  • Pekov I, Agahanov A, Boldyreva M, Grishin V (2005) Pautovite, CsFe2S3, a new mineral species from the Lovozero alkaline complex, Kola Peninsula, Russia. Can Mineral 43:965–972

    Article  Google Scholar 

  • Pilet S, Baker MB, Stolper EM (2008) Metasomatized lithosphere and the origin of alkaline lavas. Science 320:916–919

    Article  Google Scholar 

  • Salters V, Hart S (1991) The mantle sources of ridges, islands and arcs: the Hf-isotope connection. Earth Planet Sci Lett 104:364–380

    Article  Google Scholar 

  • Saunders AD, England RW, Reichow MK, White RV (2005) A mantle plume origin for the Siberian traps: uplift and extention in the West Siberian Basin, Russia. Lithos 79:407–424

    Article  Google Scholar 

  • Tappe S, Foley S, Jenner G, Heaman L, Kjarsgaard B, Romer R, Stracke A, Joyce N, Hoefs J (2006) Genesis of ultramafic Lamprophyres and Carbonatites at Aillik Bay, Labrador: a consequence of incipient lithospheric thinning beneath the North atlantic Craton. J Petrology 47:1261–1315

    Article  Google Scholar 

  • Tolstikhin IN, Kamensky IL, Marty B, Nivin VA, Vetrin A, Balaganskaya EG, Ikorsky SV, Gannibal MA, Weiss D, Verhulst A, Demaiffe D (2002) Rare gas isotopes and parent trace elements in ultrabasic-alkaline-carbonatite complexes, Kola Peninsula: identification of lower mantle plume component. Geochim Cosmochim Acta 66:881–901

    Article  Google Scholar 

  • Van der Hilst RD, Karason H (1999) Compositional heterogeneity in the bottom 1000 kilometers of earth mantle: toward a hybrid convection model. Science 283:1885–1888

    Article  Google Scholar 

  • Verhulst A, Balaganskaya E, Yu K, Demaiffe D (2000) Petrological and geochemical (trace elements and Sr-Nd isotopes) characteristics of the Paleozoic Kovdor ultramafic, alkaline and carbonatite intrusion (Kola Peninsula, NW Russia). Lithos 51:1–25

    Article  Google Scholar 

  • Vervoort JD, Patchett PJ (1996) Behavior of hafnium and neodymium isotopes in the crust: constraints from Precambrian crustally derived granites. Geochim Cosmochim Acta 60:3717–3773

    Article  Google Scholar 

  • Vervoort JD, Blichert-Toft J (1999) Evolution of the depleted mantle: Hf isotope evidence from Juvenile rocks through time. Geochimica et Cosmochemica Acta 63:533–556

    Article  Google Scholar 

  • Vervoort JD, Patchett PJ, Blichert-Toft J, Albarede F (1999) Relationship between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth Planet Sci Lett 168:79–99

    Article  Google Scholar 

  • Walker RJ, Morgan JW, Horan MF, Czamanske GK, Krogstad EJ, Fedorenko VA, Kunilov VE (1994) Re-Os isotopic evidence for an enriched-mantle source for the Noril’sk-type, ore-bearing intrusions, Siberia. Geochim Cosmochim Acta 58:4179–4197

    Article  Google Scholar 

  • Wedepohl KH, Baumann A (1999) Central European Cenozuoic plume volcanism with OIB characteristics and indications of lower mantle source. Contrib Mineral Petrol 136:225–239

    Article  Google Scholar 

  • White R, McKenzie D (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res 94:7685–7729

    Article  Google Scholar 

  • Wilson M, Downes H (1991) Tertiary–quarternary extension-related alkaline magmatism in Western and Central Europe. J Petrol 32:811–849

    Google Scholar 

  • Witti N, Baker J, Downes H (2007) U-Th-Pb and Lu-Hf isotopic constrains on the evolution of sub-continental lithospheric mantle, French Massif Central. Geochemica Cosmochemica Acta 1:1290–1311

    Article  Google Scholar 

  • Woodhead J, Hergt J, Shelley M, Eggins S, Kemp R (2004) Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chem Geol 209:121–135

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation Research, Grant No. 08-05-00054а.We are grateful to L.Gwalani and anonymous referees for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Kogarko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kogarko, L.N., Lahaye, Y. & Brey, G.P. Plume-related mantle source of super-large rare metal deposits from the Lovozero and Khibina massifs on the Kola Peninsula, Eastern part of Baltic Shield: Sr, Nd and Hf isotope systematics. Miner Petrol 98, 197–208 (2010). https://doi.org/10.1007/s00710-009-0066-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-009-0066-1

Keywords

Navigation