Skip to main content
Log in

Platinum-group element geochemical constraints on mantle heterogeneity and petrogenesis along the Cameroon Volcanic Line

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The present study reports petrographic and geochemical data on peridotite xenoliths from the Cameroon Volcanic Line (CVL). The main aim of the study is to discuss the evolution of the upper mantle beneath the CVL and Au-PGE behavior. Major element compositions were determined by X-ray fluorescence (XRF) and trace elements by inductively coupled plasmas-mass spectrometry (ICP-MS) after acid digestion. For Au-PGE compositions, NiS fire assay associated with ICP-MS was used. The peridotite samples are mainly made up of olivine, pyroxene, and spinel with quartz and serpentine in the serpentinized samples. They are classified as spinel lherzolites and serpentinized lherzolites showing protogranular texture at times deformed in porphyroclastic texture. The high Mg, Fe, Cr, Ni, Co, and low REE contents are characteristic of the upper mantle subjected to partial melting. The rare earth elements show variable degree of fractionation express by the (La/Yb)N values. The lherzolites have not experienced the same REE enrichment/depletion despite their common origin. PGE show depletion in the upper mantle beneath the CVL compared to the primitive mantle data. Low Al2O3 and high IPGE/PPGE ratios confirm the melting of the mantle, especially at Nyos and Kapsiki. The variable IPGE/PPGE, Cu/Pd and Cu/Pt ratios highlight the heterogeneity of the mantle. There is significant affinity between PGE, but they show no relationship with Au. The mantle beneath the continental part of the CVL shows similar petrogenesis. The imprints of serpentinization are expressed by the modification of the chemical compositions of Kapsiki and Darang samples. Serpentinization causes a decrease in Mg, Cr, Ni, and Co and an increase in Fe, Ba, Sr, V, Zn, Y, Zr, Ga, and REE contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aka FT, Nagao K, Kusakabe M, Sumino H, Tanyileke G, Ateba B, Hell J (2004) Symmetrical helium isotope distribution on the Cameroon Volcanic Line, West Africa. Chem Geol 203:205–223

    Article  Google Scholar 

  • Ahmed HA, Shoji A, Yaser MA-A, Moha I, Abdellatif R (2009) Platinum-group elements distribution and spinel composition in podiform chromitites and associated rocks from the upper mantle section of the Neoproterozoic Bou Azzerophiolite, Anti-Atlas, Morocco. J African Earth Sci 55:92–104

    Article  Google Scholar 

  • Alard O, Griffin WL, Lorand J-P, Jackson SE, O’Reilly SY (2000) Non-chondritic distribution of the highly siderophile elements in mantle sulfides. Nature 407:891–894

    Article  Google Scholar 

  • Asaah ANE, Yokoyama T, Aka FT, Usui T, Kuritani T, Wirmvem MJ, Iwamori H, Fozing EM, Tamen J, Mofor GZ, Ohba T, Tanyileke G, Hell JV (2015) Geochemistry of lavas from maar-bearing volcanoes in the Oku Volcanic group of the Cameroon Volcanic Line. Chem Geol 406:55–69

    Article  Google Scholar 

  • Barnes SJ, Mungall JE, Maier WD (2015) Platinum group elements in mantle melts and mantle samples. Lithos 232:395–417

    Article  Google Scholar 

  • Barnes S-J, Naldrett AJ, Gorton MP (1985) The origin of the fractionation of the platinum-group elements in terrestrial magmas. Chem Geol 53:303–323

    Article  Google Scholar 

  • Becker H, Horan MF, Walker RJ, Gao S, Lorand JP, Rudnick RL (2006) Highly siderophile element composition of the Earth’s primitive upper mantle: constraints from new data on peridotite massifs and xenoliths. Geochim Cosmochim Acta 70:4528–4550

    Article  Google Scholar 

  • Begg GC, Griffin WL, Natapov LM, O'Reilly SY, Grand SP, O’Neill CJ, Hronsky JMA, Poudjom-Djomani Y, Swain CJ, Deen T, Bowden P (2009) The lithospheric architecture of Africa: seismic tomography, mantle petrology, and tectonic evolution. Geosphere 5:23–50

    Article  Google Scholar 

  • Bilong P, Ndjigui P-D, Temdjim R, Sababa E (2011) Geochemical of peridotite and granite xenoliths during the early stage of weathering in the Nyos volcanic region: implications for PGE exploration. Chem Erde-Geochem 71:77–86

    Article  Google Scholar 

  • Burnham OM, Schweyer J (2004) Trace element analysis of geological samples by inductivity Coupled Plasma Mass Spectrometry at the Geoscience Laboratories: revised capabilities due to improvements to instrumentation. Summary of Field Work and other Activities 2004, vol 54. Ontorio Geological Survey, Open file report 6145, pp 1–20

    Google Scholar 

  • Caldeira R, Munhá JM (2002) Petrology of ultramafic nodules from São Tomé Island, Cameroon Volcanic Line (oceanic sector). J African Earth Sci 34:231–246

    Article  Google Scholar 

  • Dale CW, Luguet A, Macpherson CG, Pearson DG, Hickey-Vargas R (2008) Extreme platinum-group element fractionation and variable Os isotope compositions in Philippine Sea Plate basalts: tracing mantle source heterogeneity. Chem Geol 248:213–238

    Article  Google Scholar 

  • Déruelle B, Moreau C, Nkoumbou C, Kambou R, Lissom NE, Ghogomu RT, Nono A (1991) The Cameroon line: a review. In Magmatism in extentional structural settings. In: Kampuzu AB, Lubala RT (eds) The Phanerozoic African plate. Heidelberg, Springer-Verlag, Berlin, Germany, pp 274–327

    Google Scholar 

  • Déruelle B, Ngounouno I, Demaiffe D (2007) The ‘Cameroon Hot Line’ (CHL): a unique example of active alkaline intraplate structure in both oceanic and continental lithospheres. CR Geoscience 339:589–600

    Article  Google Scholar 

  • Fitton JG (1987) The Cameroon line, West Africa: a comparison between oceanic and continental alkaline volcanism. Geol Soc Spec Publ, London 30(1):273–291

    Article  Google Scholar 

  • Godel B, Barnes S-J (2007) Platinum-group elements in sulfide minerals and the whole rocks of the J-M Reef (Stillwater complex): implication for the formation of the reef. Chem Geol 248:272–294

    Article  Google Scholar 

  • Godel B, Barnes S-J, Maier WD (2007) Platinum-group elements in sulphide minerals, platinum-group minerals, and whole-rocks of the Merensky reef (Bushveld complex, South Africa): implications for the formation of the reef. J Petrol 48(8):1569–1604

    Article  Google Scholar 

  • Halliday AN, Dickin AP, Fallick AE, Fitton JG (1988) Mantle dynamics: a Nd, Sr, Pb and O isotopic study of the Cameroon Line volcanic chain. J Petrol 29:181–211

    Article  Google Scholar 

  • Irvine GJ, Pearson DG, Kjarsgaard BA, Carlson RW, Kopylova MG, Dreibus G (2003) A Re-Os isotope and PGE study of kimberlite-derived peridotite xenoliths from Somerset Island and a comparison to the Slave and Kaapvaal cratons. Lithos 71:461–488

    Article  Google Scholar 

  • Ismail SA, Mirza TM, Carr PF (2010) Platinum-group elements geochemistry in podiform chromitites and associated peridotites of the Mawatophiolite, north eastern Iraq. J Asian Earth Sci 37(1):31–41

    Article  Google Scholar 

  • Lee DC, Halliday AN, Davies GR, Essene EJ, Fitton JG, Temdjim R (1996) Melt enrichment of shallow depleted mantle: a detailed petrological, trace element and isotopic study of mantle-derived xenoliths and megacrysts from the Cameroon Line. J Petrol 37:415–441

    Article  Google Scholar 

  • Lee DC, Halliday AN, Fitton JG, Poli G (1994) Isotopic variations with distance and time in the volcanic islands of the Cameroon line: evidence for a mantle plume origin. Earth Planet Sci Lett 123:119–138

    Article  Google Scholar 

  • Leblanc M, Nicolas A (1992) Ophiolitic chromites. Int Geol Rev 34: 653–686

  • Lesher CM, Stone WE (1996) Exploration geochemistry of komatiites. In: Wyman DA (ed) Igneous Trace Elements Geochemistry, Application for Massive Sulphide Exploration, vol 12. Geological Association of Canada, pp 153–204

    Google Scholar 

  • Lorand J-P, Alard O (2001) Platinum-group element abundances in the upper mantle: new constraints from in situ and whole-rock analyses of Massif Central xenoliths (France). Geochim Cosmochim Acta 65:2789–2806

    Article  Google Scholar 

  • Lorand J-P, Pattou L, Gros M (1999) Fractionation of platinum-group elements and gold in the upper mantle: a detailed study in Pyrenean orogenic lherzolites. J Petrol 40:957–981

    Article  Google Scholar 

  • Luguet A, Alard O, Lorand JP, Pearson NJ, Ryan C, O’Reilly SY (2001) Laser-ablation microprobe (LAM)-ICPMS unravels the highly siderophile element geochemistry of the oceanic mantle. Earth Planet Sci Lett 189:285–294

    Article  Google Scholar 

  • Luguet A, Lorand J-P Seyler M (2003) Sulfide petrology and highly siderophile element geochemistry of abyssal peridotites: a coupled study of samples from the Kane Fracture Zone (45_W 23_200N, Mark area, Atlantic Ocean). Geochim Cosmochim Acta 67(8): 1553–1570

  • Lyubetskaya T, Korenaga J (2007) Chemical composition of Earth’s primitive mantle and its variance: 1. Method and results. J Geophys Res 112:B03211

    Google Scholar 

  • Maier WD, Barnes S-J (1999) The origin of the sulphide deposits in the Curaca Valley, Bahia, Brazil: evidence from Cu, Ni, Sc and platinium-group element concentration. Bull Soc Econ Geol 94(2):165–183

    Article  Google Scholar 

  • Matsukage KN, Oya M (2010) Petrological and chemical variability of peridotite xenoliths from the Cameroon Volcanic Line, West Africa: an evidence for plume emplacement. J Mineral Petrol Sci 105:57–69

    Article  Google Scholar 

  • McDonald I, De Wit MJ, Smith CB, Bizzi LA, Viljoen KS (1995) The geochemistry of the platinum group of elements in Brazilian and southern African kimberlites. Geochim Cosmochim Acta 59:2882–2903

    Article  Google Scholar 

  • McKenzie DP, O’Nions RK (1991) Partial melting distributions from inversion of rare earth element concentration. J Petrol 32:1021–1091

    Article  Google Scholar 

  • Merle R, Marzoli A, Aka FT, Chiaradia JM, Reisberg L, Castorina F, Jourdan F, Renne PR, N’ni J, Nyobe JB (2017) Mt Bambouto volcano, Cameroon Line: mantle source and differentiation of within-plate alkaline rocks. J Petrol 58(5):933–962

    Google Scholar 

  • Nana R (2001) Pétrologie des péridotites en enclaves dans les basaltes alcalins récents de Nyos : apport à la connaissance du manteau supérieur de la ligne du Cameroun. Thèse Doct d’Etat. Univ Yaoundé I, p 220

    Google Scholar 

  • Ngounouno I (1998) Chronologie, pétrologie et cadre géographique du magmatisme cénozoïque de la ligne du Cameroun. In: Vicat JP, Bilong P (eds) Géosciences au Cameroun, Collect. Géocam. Presses Universitaires de Yaoundé, pp 169–184

    Google Scholar 

  • Ngounouno I, Déruelle B (2007) Pétrologie des xénolites de wehrlites et clinopyroxénites du mont Cameroun : évidence d’un métasomatisme mantellique. J Cam Acad Sci 7:35–46

    Google Scholar 

  • Ngounouno I, Déruelle B, Montigny R, Demaiffe D (2006) Les camptonites du mont Cameroun, Afrique. C R Geosci 338:537–544

    Article  Google Scholar 

  • Dagwai N, Chazot G, Kamgang P, Mbowou Gbambié I, Ngounouno I (2014) Spinel-bearing lherzolite xenoliths from Hosséré Garba (Likok, Adamawa-Cameroon): mineral compositions and geothermobarometric Implications. Int J Geosci 5:1435–1444

    Article  Google Scholar 

  • Nicolini P (1990) Gîtologie et exploration minière. Technique et Documentation, Lavoisier, p 589

    Google Scholar 

  • Njilah IK, Ndikontar MK, Eno Belinga S (1999) The Cameroon line volcanoes. In: Vicat JP, Bilong P (eds) Géologie et Environnements au Cameroun, Collection Géocam, 2/1999. Presses Universitaires de Yaoundé, pp 295–303

    Google Scholar 

  • Nkouandou OF, Bardintzeff J-M, Fagny AM (2015) Sub-continental lithospheric mantle structure beneath the Adamawa plateau inferred from the petrology of ultramafic xenoliths from Ngaoundere (Adamawa plateau, Cameroon, Central Africa). J African Earth Sci 111:26–40

    Article  Google Scholar 

  • Rankenburg K, Lassiter JC, Brey G (2004) The role of continental crust and lithospheric mantle in the genesis of Cameroon Volcanic Line lavas: constraints from isotopic variations in lavas and megacrysts from the Biu and Jos Plateaux. J Petrol 46(1):169–190

    Article  Google Scholar 

  • Rao CNV, Lehmann B, Balaram V (2013) Platinum-group element (PGE) geochemistry of Deccan orangeites, Bastar craton, central India: implication for a non-terrestrial origin for iridium enrichment at the K–Pg boundary. J African Earth Sci 84:24–33

    Google Scholar 

  • Richardson T, Burnham OM (2002) Precious metal analysis at the Geoscience Laboratories: results from the new low-level analytical facility. In: Summary of Field Workand Other Activities 2002, Ontario Geological Survey, Open File Report 6100, vol 35, pp 1–5

    Google Scholar 

  • Rogkala A, Petrounias P, Tsikouras B, Giannakopoulou PP, Hatzipanagiotou K (2019) Mineralogical evidence for partial melting and melt-rock interaction processes in the mantle peridotites of Edessa ophiolite (North Greece). Minerals 9:120

    Article  Google Scholar 

  • Sababa E, Fuh CG, Ndjigui P-D, Onana PN, Seyoa DT (2021) Petrography and geochemistry of sulfurous volcanic scoria from Mount Cameroon area, Central Africa: implications for Au-PGE exploration. J African Earth Sci 176:104144

    Article  Google Scholar 

  • Sababa E, Ndjigui P-D, Ebah Abeng SA, Bilong P (2015) Geochemistry of peridotite xenoliths from the Kumba and Nyos areas (southern part of the Cameroon Volcanic Line): implications for Au-PGE exploration. J Geochem Explor 152:75–90

    Article  Google Scholar 

  • Tamen J (1998) Contribution à l’étude géologique du plateau Kapsiki (Extrême-Nord, Cameroun): volcanologie, pétrologie et géochimie. Thèse Doct 3ème cycle. Univ Ydé I, p 172

    Google Scholar 

  • Tamen J, Nkoumbou C, Reusser E, Tchoua F (2015) Petrology and gepchemistry of mantle xenoliths from the Kapsiki Plateau (Cameroon Volcanic Line): implications for lithospheric upwelling. J African Earth Sci 101:119–134

    Article  Google Scholar 

  • Teitchou MI, Gregoire M, Dantas C, Tchoua FM (2007) Le manteau supérieur à l’aplomb de la plaine de Kumba (ligne du Cameroun), d’après les enclaves de péridotites à spinelles dans les laves basaltiques. CR Geoscience 339:101–109

    Article  Google Scholar 

  • Temdjim R, Boivin P, Chazot G, Robin C, Rouleau E (2004) Upper-mantle heterogeneities beneath the Nyos volcano (Cameroon) from the study of ultramafic xenoliths. CR Géoscience 336:1239–1244

    Article  Google Scholar 

  • Trescases JJ (1975) L’évolution supergène des roches ultrabasiques en zone tropicale. Mém Orstom 78-259(78):259

    Google Scholar 

  • Tzamos E, Kapsiotis A, Filippidis A, Koroneos A, Grieco G, Ewing Rassios A, Kantiranis N, Papadopoulos A, Gamaletsos PN, Godelitsas A (2017) Metallogeny of the chrome ores of the xerolivado-skoumtsa mine, vourinos ophiolite, Greece: implications on the genesis of IPGE-bearing high-Cr chromitites within a heterogeneously depleted mantle section. Ore Geol Rev 90:226–242

    Article  Google Scholar 

  • Uysal I, Ersoy EY, Karsli O, Dilek Y, Burthan Sadiklar M, Ottley CJ, Tiepolo M, Meisel T (2012) Coexistence of abyssal and ultra-depleted SSZ type mantle peridotites in a neo-Tethyan ophiolite in SW Turkey: constraints from mineral composition, whole-rock geochemistry (major-rare-REE-PGE), and Re-Os isotope systematics. Lithos 132-133:50–69

    Article  Google Scholar 

  • Witt TL, Seck HA (1987) Temperature history of sheared mantle xenoliths from the west Eiffel, West Germany: evidence for mantle diapirism beneath the Rhenish Massif. J Petrol 28:475–483

    Article  Google Scholar 

  • Zhang Z, Mao J, Mahoney JJ, Wang F, Qu W (2005) Platinum group of elements (PGE) in the Emeishan large igneous province, SW China: implications for mantle sources. Geochem J 39:371–382

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Nguihdama Dagwai for field work assistance in the Kapsiki area and Mrs Njimanu Njong Vanisa for English style improvement. We are indebted to Renaud Merle who greatly improved the final manuscript. Many thanks are also given to the Editor-in-Chief (Abdullah M. Al-Amri) for his constructive criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisé Sababa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Domenico M. Doronzo

Supplementary information

ESM 1

(DOCX 18 kb)

ESM 2

(DOCX 20 kb)

ESM 3

(DOCX 21 kb)

ESM 4

(DOCX 22 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djokgoue Yonga, F.K., Sababa, E. & Ndjigui, PD. Platinum-group element geochemical constraints on mantle heterogeneity and petrogenesis along the Cameroon Volcanic Line. Arab J Geosci 16, 598 (2023). https://doi.org/10.1007/s12517-023-11711-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-023-11711-8

Keywords

Navigation