Skip to main content
Log in

Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We present initial 176Hf/177 Hf ratios for many samples of continental crust 3.7-0.3 Gy old. Results are based chiefly on zircons (1% Hf) and whole rocks: zircons are shown to be reliable carriers of essentially the initial Hf itself when properly chosen on the basis of U-Pb studies. Pre-3.0 Gy gneisses were apparently derived from an unfractionated mantle, but both depleted and undepleted mantle are evident as magma sources from 2.9 Gy to present. This mantle was sampled mainly from major crustal growth episodes 2.8, 1.8 and 0.7 Gy ago, all of which show gross heterogeneity of 176Hf/177Hf in magma sources from εHf=0 to +14, or about 60% of the variability of the present mantle.

The approximate εHf=2εNd relationship in ancient and modern igneous rocks shows that 176Lu/177Hf fractionates in general twice as much as 147Sm/144Nd in mantle melting processes. This allows an estimation of the relative value of the unknown bulk solid/liquid distribution coefficient for Hf. DLu/DHf=∼ 2.3 holds for most mantle source regions. For garnet to be an important residual mantle phase, it must hold Hf strongly in order to preserve Hf-Nd isotopic relationships.

The ancient Hf initials are consistent with only a small proportion of recycled older cratons in new continental crust, and with quasi-continuous, episodic growth of the continental crust with time. However, recycling of crust less than 150 My old cannot realistically be detected using Hf initials. The mantle shows clearly the general positive εHf resulting from a residual geochemical state at least back to 2.9 Gy ago, and seems to have repeatedly possessed a similar degree of heterogeneity, rather than a continuously-developing depletion. This is consistent with a complex dynamic disequilibrium model for the creation, maintenance and destruction of heterogeneity in the mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alapieti T (in press) The Koillismaa layered igneous complex, Finland — its structure, mineralogy and geochemistry, with emphasis on the distribution of chromium. Geol Surv Finland Bull 319

  • Alapieti T, Hugg R, Piirainen T, Ruotsalainen A (1979) The ultramafic and mafic intrusion at Näränkävaara, northeastern Finland. Geol Surv Finland Rep Investigation No 35:31 pp

  • Allègre CJ, Ben Othman D (1980) Nd-Sr isotopic relationship in granitoid rocks and continental crust development; a chemical approach to orogenesis. Nature 286:335–342

    Google Scholar 

  • Allègre CJ, Brévart O, Dupré B, Minster J-F (1980) Isotopic and chemical effects produced in a continuously differentiating convecting Earth mantle. Philos Trans R Soc London A 297:447–477

    Google Scholar 

  • Armstrong RL (1968) A model for Sr and Pb isotope evolution in a dynamic Earth. Rev Geophys 6:175–199

    Google Scholar 

  • Armstrong RL (1981) Radiogenic isotopes: the case for crustal recycling on a near steady-state no-continental-growth Earth. Philos Trans R Soc London A301:443–472

    Google Scholar 

  • Baadsgaard H (1973) U-Th-Pb dates on zircons from the early Precambrian Amîtsoq gneisses, Godthaab district, West Greenland. Earth Planet Sci Lett 19:22–28

    Article  Google Scholar 

  • Barker F, Wones DR, Sharp WN, Desborough GA (1975) The Pikes Peak batholith Colorado Front Range and a model for the origin of the gabbro-anorthosite-syenite-potassic granite suite. Precam-brian Res 2:97–160

    Article  Google Scholar 

  • Basu AR, Ray SL, Saha AK, Sarkar SN (1981) Eastern Indian 3800- million-year-old crust and early mantle differentiation. Science 212:1502–1506

    Google Scholar 

  • Blais S, Auvray B, Capdevila R, Jahn BM, Hameurt J, Bertrand JM (1978) The Archean greenstone belts of Karelia (eastern Finland) and their komatiitic and tholeiitic series. In: Windley BF, Naqvi SM (eds) Archean geochemistry. Elsevier Amsterdam, pp 87–107

    Google Scholar 

  • Blaxland AB (1977) Agpaitic magmatism at Norra Kärr? Rb-Sr isotopic evidence. Lithos 10:1–8

    Article  Google Scholar 

  • Blaxland AB, van Breemen O, Steenfelt A (1976) Age and origin of agpaitic magmatism at Ilimaussaq, South Greenland. Lithos 9:31–38

    Article  Google Scholar 

  • Bridgwater D, Keto L, McGregor VR, Myers JS (1976) Archean gneiss complex of Greenland. In: Escher A, Watt WS (eds) The geology of Greenland. Grønlands Geologiske Undersøgelse, København, pp 19–75

    Google Scholar 

  • Chase CG (1981) Oceanic island Pb: two-stage histories and mantle evolution. Earth Planet Sci Lett 52:277–284

    Article  Google Scholar 

  • Cooper JA, Stacey JS, Stoeser DG, Fleck RJ (1979) An evaluation of the zircon method of isotopic dating in the southern Arabian craton. Contrib Mineral Petrol 68:429–439

    Google Scholar 

  • Davies GF (1981) Earth's neodymium budget and structure and evolution of the mantle. Nature 290:208–213

    Google Scholar 

  • DePaolo DJ (1979) Implications of correlated Nd and Sr isotopic variations for the chemical evolution of the crust and mantle. Earth Planet Sci Lett 43:201–211

    Article  Google Scholar 

  • DePaolo DJ (1980) Crustal growth and mantle evolution: inferences from models of element transport and Nd and Sr isotopes. Geochim Cosmochim Acta 44:1185–1196

    Article  Google Scholar 

  • DePaolo DJ (1981) Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature 291:193–196

    Google Scholar 

  • DePaolo DJ, Wasserburg GJ (1976) Nd isotopic variations and petrogenetic models. Geophys Res Lett 3:249–252

    Google Scholar 

  • DePaolo DJ, Wasserburg GJ (1979a) Sm-Nd age of the Stillwater complex and the mantle evolution curve for neodymium. Geochim Cosmochim Acta 43:999–1008

    Article  Google Scholar 

  • DePaolo DJ, Wasserburg GJ (1979b) Petrogenetic mixing models and Nd-Sr isotopic patterns. Geochim Cosmochim Acta 43:615–627

    Article  Google Scholar 

  • Erlank AJ, Smith HS, Marchant JW, Cardoso MP, Ahrens LH (1978) Section 72-Hafnium. In: Wedepohl KH (ed). Handbook of Geochemistry. Springer, Berlin

    Google Scholar 

  • Fischer L, Stacey JS (in preparation) U-Pb, Lu-Hf and Sm-Nd isotopic evidence for early history of the Archean gneisses of the Granite Mountains, Wyoming

  • Frey FA, Green DH, Roy SD (1978) Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from southeastern Australia utilizing geochemical and experimental petrological data. J Petrol 19:463–513

    Google Scholar 

  • Gaál G, Mikkola A, Söderholm B (1978) Evolution of the Archean crust in Finland. Precambrian Res 6:199–215

    Article  Google Scholar 

  • Gaál G, Rauhamäki E (1971) Petrological and structural analysis of the Haukivesi area between Varkaus and Savonlinna, Finland. Bull Geol Soc Finland 43:265–337

    Google Scholar 

  • Geological Survey of Finland (1977, 1978, 1979, 1981) Annual report on the activities for the years 1976, 1977, 1978, 1980

  • Greenwood WR, Hadley DG, Anderson RE, Fleck RJ, Schmidt DL (1976) Late Proterozoic cratonization in southwestern Saudi Arabia. Philos Trans R Soc London A280:517–527

    Google Scholar 

  • Haapala I (1977) Petrography and geochemistry of the Eurajoki Stock, a rapakivi-granite complex with greisen-type mineralization in southwestern Finland. Geol Surv Finland Bull 286:128 pp

    Google Scholar 

  • Hedge CE (1970) Whole rock Rb-Sr age of the Pikes Peak batholith Colorado. US Geol Surv Prof Pap 700-B:86–89

    Google Scholar 

  • Hedge CE, Peterman ZE, Braddock WA (1967) Age of the major Precambrian regional metamorphism in the northern Front Range Colorado. Geol Soc Am Bull 78:551–558

    Google Scholar 

  • Hietanen A (1975) Generation of potassium-poor magmas in the northern Sierra Nevada and the Svecofennian of Finland. J Res US Geol Surv 3:631–645

    Google Scholar 

  • Hofmann AW, White WM (1980) The role of subducted oceanic crust in mantle evolution. Carnegie Inst Wahington Yearb 79:477–483

    Google Scholar 

  • Hopgood AM, Bowes DR, Addison J (1976) Structural development of migmatites near Skåldö, southwest Finland. Bull Geol Soc Finland 48:43–62

    Google Scholar 

  • Hyppönen V (in preparation) Explanation to the maps of Pre-Quaternary rocks. Geological map of Finland 1∶100,000, sheets 4411 Ontojoki, 4412 Hiisijärvi and 4413 Kuhmo

  • Jacobsen S, Wasserburg GJ (1979) The mean age of mantle and crustal reservoirs. J Geophys Res 84:7411–7427

    Google Scholar 

  • Jacobsen S, Wasserburg GJ (1980) Sm-Nd isotopic evolution of chondrites. Earth planet Sci Lett 50:139–155

    Article  Google Scholar 

  • Jahn BM, Nyquist LE (1976) Crustal evolution in the early EarthMoon system: constraints from Rb-Sr studies. In: Windley BF (ed) The early history of the Earth. Wiley, London-New York, pp 55–76

    Google Scholar 

  • Jahn BM, Sun SS (1979) Trace element distribution and isotopic composition of Archean greenstones. In: Ahrens LH (ed) origin and distribution of the elements-second symposium. Pergamon, Oxford, pp 597–618

    Google Scholar 

  • Jahn BM, Vidal P, Tilton GR (1980a) Archean mantle heterogeneity: evidence from chemical and isotopic abundances in Archean igneous rocks. Philos Trans R Soc London A297:353–364

    Google Scholar 

  • Jahn BM, Auvray B, Blais S, Capdevila R, Cornichet J, Vidal F, Hameurt J (1980b) Trace element geochemistry and petrogenesis of Finnish greenstone belts. J Petrol 21:201–244

    Google Scholar 

  • Kahma A, Siikarla T, Veltheim V, Vaasjoki O, Heikkinen A (1962) On the prospecting and geology of the Kemi chromite deposit, Finland. Bull Comm Geol Finland 194:91 pp

    Google Scholar 

  • Kaitaro S (1953) Geologic structure of the late Precambrian intrusives in the Åva area, Åland Islands. Bull Comm Geol Finland 162:71 pp

    Google Scholar 

  • Kononova VA, Shanin LL, Arakelyants MM (1973) Times of formation of alkaline massifs and carbonatites. Int Geol Rev 16:1119–1130

    Google Scholar 

  • Kouvo O (1977) The use of mafic pegmatoids in geochronometry. Abstr 5th Europ Coll Geochron, Pisa, Italy

  • Kouvo O, Tilton GR (1966) Mineral ages from the Finnish Precambrian. J Geol 74:421–442

    Google Scholar 

  • Kröner A, Puustinen K, Hickman M (1981) Geochronology of an Archean tonalitic gneiss dome in northern Finland and its relation with an unusual overlying volcanic conglomerate and komatiitic greenstone. Contrib Mineral Petrol 76:33–4l

    Google Scholar 

  • Lugmair GW, Marti K, Kurtz JP, Scheinin NB (1976) History and genesis of Lunar troctolite 76535 or: how old is old? Proc Lunar Sci Conf 7th: 2009–2033

  • Manhes G, Allègre CJ, Dupré B, Hamelin B (1980) Lead isotope study of basic-ultrabasic layered complexes: speculation about the age of the Earth and primitive mantle characteristics. Earth Planet Sci Lett 47:370–382

    Article  Google Scholar 

  • Marvin UB, Klein C Jr (1964) Meteoritic zircon. Science 146:919–920

    Google Scholar 

  • McCallum IS, Charette MP (1978) Zr and Nb partition coefficients: implications for the genesis of mare basalts, KREEP and sea floor basalts. Geochim Cosmochim Acta 42:859–869

    Article  Google Scholar 

  • McCulloch MT, Wasserburg GJ (1980) Early Archean Sm-Nd model ages from a tonalitic gneiss, northern Michigan. Geol Soc Am Spec Pap 182:135–138

    Google Scholar 

  • McKenzie D, Weiss N (1975) Speculations on the thermal and tectonic history of the Earth. Geophys J R Astron Soc 42:131–174

    Google Scholar 

  • Meriläinen K (1976) The granulite complex and adjacent rocks in Lapland, northern Finland. Geol Surv Finland Bull 281:129 pp

  • Moorbath S (1975) Evolution of Precambrian crust from strontium isotopic evidence. Nature 254:395–398

    Google Scholar 

  • Moorbath S (1977) Ages, isotopes and evolution of Precambrian continental crust. Chem Geol 20:151–187

    Article  Google Scholar 

  • Moorbath S (1978) Age and isotope evidence for the evolution of continental crust. Philos Trans R Soc London A288:401–413

    Google Scholar 

  • Moorbath S, Pankhurst RJ (1976) Further Rb-Sr age and isotope evidence for the nature of the late Archean plutonic event in West Greenland. Nature 262:124–126

    Google Scholar 

  • Moorbath S, O'Nions RK, Pankhurst RJ, Gale NH, McGregor VR (1972) Further Rb-Sr age determinations on the very early Precambrian rocks of the Godthaab district, West Greenland. Nature 240:78–82

    Google Scholar 

  • Neuvonen KJ (1974) Paleolatitude and the cause of the Svecokarelian orogeny. Bull Geol Soc Finland 45:23–27

    Google Scholar 

  • Neuvonen KJ, Korsman K, Kouvo O, Paavola J (in press) Paleomagnetism and age relations of the rocks from the main sulphide ore belt in central Finland. Bull Geol Soc Finland 53

  • Nunes PD, Thurston PC (1980) Two hundred and twenty million years of Archean evolution: a zircon U-Pb age stratigraphic study of the Uchi-Confederation Lakes greenstone belt, northwestern Ontario. Can J Earth Sci 17:710–721

    Google Scholar 

  • Nuutilainen J (1968) On the geology of the Misi iron ore province, northern Finland. Annal Acad Sci Fennicae Ser AIII No 96:98 pp

    Google Scholar 

  • Nykänen O (in preparation) Explanation to the maps of Pre-Quaternary rocks. Geological map of Finland 1∶100,000, sheets 4124–4142 Punkaharju and 4123–4114 Simpele

  • O'Nions RK, Hamilton PJ, Evensen NM (1977) Variations in 143Nd/ 144Nd and 87Sr/86Sr ratios in oceanic basalts. Earth Planet Sci Lett 34:13–22

    Article  Google Scholar 

  • O'Nions RK, Evensen NM, Hamilton PJ (1979) Geochemical modelling of mantle differentiation and crustal growth. J Geophys Res 84:6091–6101

    Google Scholar 

  • Papanastassiou DA, De Paolo DJ, Wasserburg GJ (1977) Rb-Sr and Sm-Nd chronology and genealogy of mare basalts from the sea of Tranquility. Proc Lunar Sci Conf 8th:1639–1672

    Google Scholar 

  • Patchett PJ, Jocelyn J (1979) U-Pb zircon ages for late Precambrian igneous rocks in South Wales. J Geol Soc London 136:13–19

    Google Scholar 

  • Patchett PJ, Tatsumoto M (1980a) Lu-Hf total-rock isochron for the eucrite meteorites. Nature 288:571–574

    Google Scholar 

  • Patchett PJ, Tatsumoto M (1980b) Hafnium isotope variations in oceanic basalts. Geophys Res Lett 7:1077–1080

    Google Scholar 

  • Patchett PJ, Tatsumoto M (1980c) A routine high-precision method for Lu-Hf isotope geochemistry and chronology. Contrib Mineral Petrol 75:263–267

    Google Scholar 

  • Patchett PJ, Tatsumoto M (1981a) Lu/Hf in chondrites and definition of a chondritic hafnium growth curve. Lunar Sci XII:822–824

    Google Scholar 

  • Patchett PJ, Tatsumoto M (1981b) The hafnium isotopic evolution of Lunar basalts. Lunar Sci XII:819–821

    Google Scholar 

  • Patchett PJ, Bylund G, Upton BGJ (1978) Paleomagnetism and the Grenville orogeny: new Rb-Sr ages from dolerites in Canada and Greenland. Earth Planet Sci Lett 40:349–364

    Article  Google Scholar 

  • Patchett PJ, Gale NH, Goodwin R, Humm MJ (1980) Rb-Sr wholerock isochron ages of Late Precambrian to Cambrian igneous rocks from southern Britain. J Geol Soc London 137:649–656

    Google Scholar 

  • Pekkarinen LJ (1979) The Karelian formations and their depositional basement in the Kiihtelysvaara-Värtsilä area, East Finland. Geol Surv Finland Bull 301:141 pp

    Google Scholar 

  • Peterman ZE (1979) Geochronology and the Archean of the United States. Econ Geol 74:1544–1562

    Google Scholar 

  • Peterman ZE, Hedge CE (1968) Chronology of Precambrian events in the Front Range, Colorado. Can J Earth Sci 5:749–756

    Google Scholar 

  • Peterman ZE, Hildreth RA (1978) Reconnaissance geology and geochronology of the Precambrian of the Granite Mountains, Wyoming. US Geol Surv Prof Pap 1055:22 pp

    Google Scholar 

  • Peterman ZE, Hedge CE, Braddock WA (1968) Age of Precambrian events in the northeastern Front Range, Colorado. J Geophys Res 73:2277–2296

    Google Scholar 

  • Peterman ZE, Zartman RE, Sims PK (1980) Tonalitic gneiss of early Archean age from northern Michigan. Geol Soc Am Spec Pap 182:125–133

    Google Scholar 

  • Peterman ZE, Zartman RE, Sims PK (in preparation) A protracted Archean history in the Watersmeet dome, northern Michigan.

  • Pettingill HS, Patchett PJ (1981) Lu-Hf total-rock age for the Amîtsoq gneisses West Greenland. Earth Planet Sci Lett 55:150–156

    Article  Google Scholar 

  • Pidgeon RT, Hopgood AM (1975) Geochronology of Archean gneisses and tonalites from north of the Frederickshåbs isblink, SW Greenland. Geochim Cosmochim Acta 39:1333–1346

    Article  Google Scholar 

  • Pidgeon RT, Aftalion M (1978) Cogenetic and inherited zircon U-Pb systems in granites: Paleozoic granites of Scotland and England. In: Bowes DR, Leake BE (eds) Crustal evolution in northwest Britain and adjacent regions. Geol J Spec Issue 10:183–220

  • Poorter RPE (1976) Paleomagnetism of the Svecofennian Loftahammar gabbro and some Jotnian dolerites in the Swedish part of the Baltic Shield. Phys Earth Planet Inter 12:51–64

    Article  Google Scholar 

  • Puustinen K (1971) Geology of the Siilinjärvi carbonatite complex, eastern Finland. Bull Comm Geol Finland 249:43 pp

    Google Scholar 

  • Rast N, O'Brien BH, Wardle RJ (1976) Relationships between Precambrian and lower Paleozoic rocks of the Avalon platform in New Brunswick, the northwest Appalachians and the British Isles. Tectonophys 30:315–338

    Article  Google Scholar 

  • Richter FM, Ribe NM (1979) On the importance of advection in determining the local isotopic composition of the mantle. Earth Planet Sci Lett 43:212–222

    Article  Google Scholar 

  • Sakko M (1971) Varhais-Karjalaisten metadiabaasien radiometrisiä zirkoni-ikiä (radiometric zircon ages of early Karelian metadiabases). Geologi 23:117–118

    Google Scholar 

  • Sakko M, Laajoki K (1975) Whole rock Pb-Pb isochron age for the Pääkkö iron formation in Väyrylankylä, South Puolanka area, Finland. Bull Geol Soc Finland 47:113–116

    Google Scholar 

  • Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243

    Article  Google Scholar 

  • Siivola J (1977) Baddeleyite — ZrO2 — from Lovasjärvi diabase, southeastern Finland. Bull Geol Soc Finland 49:59–64

    Google Scholar 

  • Simonen A (1980) The Precambrian in Finland. Geol Surv Finland Bull 304:58pp

  • Simonen A (in preparation) Explanation to the maps of Pre-Quaternary rocks. Geological map of Finland 1∶100,000, sheets 2123 Mäntyharju and 3142 Mikkeli

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    Article  Google Scholar 

  • Stern TW, Phair G, Newell MF (1971) Boulder Creek batholith, Colorado. Part II: isotopic age of emplacement and morphology of zircon. Geol Soc Am Bull 82:1615–1634

    Google Scholar 

  • Sun SS (1980) Lead isotopic study of young volcanic rocks from midocean ridges, ocean islands and island arcs. Philos Trans R Soc London A 297:409–445

    Google Scholar 

  • Sun SS, Nesbitt RM (1977) Chemical heterogeneity of the Archean mantle, composition of the Earth and mantle evolution. Earth Planet Sci Lett 35:429–448

    Article  Google Scholar 

  • Suominen V (in preparation) Radiometric ages on zircon from the Jotnian olivine diabases, western Finland

  • Talvitie J, Paarma H (1980) Precambrian basic magmatism and the Ti-Fe ore formation in central and northern Finland. Geol Surv Finland Bull 307:98–107

    Google Scholar 

  • Tatsumoto M (1978) Isotopic composition of lead in oceanic basalt and its implication to mantle evolution. Earth Planet Sci Lett 38:63–87

    Article  Google Scholar 

  • Tatsumoto M, Unruh DM, Patchett PJ (in press) U-Pb and Lu-Hf systematics of Antarctic meteorites. Proc 6th symp Antarctic meteorites, Natl Inst Polar Res, Tokyo

  • Taylor PN, Moorbath S, Goodwin R, Petrykowski AC (1980) Crustal contamination as an indicator of the extent of early Archean continental crust: Pb isotopic evidence from the late Archean gneisses of west Greenland. Geochim Cosmochim Acta 44:1437–1453

    Article  Google Scholar 

  • Tilton GR, Grünenfelder M (1968) Sphene: Uranium-lead ages. Science 159:1458–1461

    Google Scholar 

  • Treuil M, Joron JL (1975) Utilisation des éléments hygromagmatophiles pour la simplification de la modélisation quantitative des processus magmatiques, exemples de L'Afar et de la dorsale Médioatlantique. Soc Ital Mineral Petrol 31:125–174

    Google Scholar 

  • Tweto O (1980) Precambrian geology of Colorado. Rocky Mtn Assn Geol 1980 Symp: 37–46

  • Tyrväinen A (in preparation) Explanation to the maps of Pre-Quaternary rocks. Geological map of Finland 1∶100,000, sheets 3713 Sodankylä and 3714 Sattanen

  • Vaasjoki M (1977) Rapakivi granites and other postorogenic rocks in Finland: their age and the lead isotopic composition of certain associated galena mineralizations. Geol Surv Finland Bull 294:64pp

    Google Scholar 

  • Vartiainen H, Woolley AR (1974) The age of the Sokli carbonatite, Finland and some relationships of the North Atlantic alkaline igneous province. Bull Geol Soc Finland 46:81–91

    Google Scholar 

  • Vartiainen H, Paarma M (1979) Geological characteristics of the Sokli carbonatite complex, Finland. Econ Geol 74:1296–1306

    Google Scholar 

  • Vidal P, Blais S, Jahn BM, Capdevila R, Tilton GR (1980) U-Pb and Rb-Sr systematics of the Suomussalmi Archean greenstone belt (eastern Finland). Geochim Cosmochim Acta 44:2033–2044

    Article  Google Scholar 

  • Vorma A (1976) On the petrochemistry of rapakivi granites with special reference to the Laitila massif, southwestern Finland. Geol Surv Finland Bull 285:98pp

    Google Scholar 

  • Vorma A, Paasivirta T (1979) Contribution to the mineralogy of rapakivi granites: I. zircon of the Laitila rapakivi, southwestern Finland. Geol Surv Finland Bull 303:40 pp

    Google Scholar 

  • Wasserburg GJ, DePaolo DJ (1979) Models of Earth structure inferred from neodymium and strontium isotopic abundances. Proc Natl Acad Sci USA 76:3594–3598

    Google Scholar 

  • Zartman RE, Doe BR (1981) Plumbotectonics — the model. Tectonophys 75:135–162

    Article  Google Scholar 

  • Zindler A, Staudigel H, Langmuir CH, Goldstein S, Weaver S (1981) Nd and Sr isotope variations in young Pacific seamounts: implications for the scale of mantle heterogeneity. EOS 62:424

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonathan Patchett, P., Kouvo, O., Hedge, C.E. et al. Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes. Contr. Mineral. and Petrol. 78, 279–297 (1982). https://doi.org/10.1007/BF00398923

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00398923

Keywords

Navigation