Skip to main content
Log in

Assessment of refined high-order global–local theory for progressive failure analysis of laminated composite beams

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

An efficient and computationally low-cost one-dimensional (1D) finite element model is developed for the progressive failure analysis of laminated composite beams. The employed finite element formulation is based on a refined high-order global–local beam (RHGB) theory which satisfies all the kinematic and stress continuity conditions at the layer interfaces. This RHGB theory also considers effects of the transverse normal stress and transverse flexibility. By using the well-known failure theories, an iterative method is adopted to predict the first ply failure load of the laminated composite beam. After the first ply failure, the material properties of the failed elements are modified using a stiffness degradation factor. Then, the applied load is increased step-by-step. This analysis is repeated for each load increment until the ultimate strength of the laminate is reached. Hashin, Maximum stress, Hoffman, Tsai–Hill and Tsai–Wu failure criteria are used to assess the possible damage at beam elements from the initial to the final step. The present failure formulation has been validated by comparison with experimental and theoretical results available in the open literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jones, R.M.: Mechanics of Composite Materials. CRC Press, Boca Raton (1999)

    Google Scholar 

  2. Hoffman, O.: The brittle strength of orthotropic materials. J. Compos. Mater. 1, 200–206 (1967)

    Article  Google Scholar 

  3. Hill, R.: A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. Lond. Ser. A: Math. Phys. Sci. 193, 281–297 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  4. Tsai, S.W., Wu, E.M.: A general theory of strength for anisotropic materials. J. Compos. Mater. 5, 58–80 (1971)

    Article  Google Scholar 

  5. Yeh, H.L.: Quadric surfaces criterion for composite materials. J. Reinf. Plast. Compos. 22, 517–532 (2003)

    Article  Google Scholar 

  6. Yeh, H.L., Yeh, H.Y.: The modified quadric surfaces criterion for composite materials. J. Reinf. Plast. Compos. 21, 277–289 (2002)

    Article  Google Scholar 

  7. Hashin, Z.: Fatigue failure criteria for unidirectional fiber composites. J. Appl. Mech. 48, 846–852 (1981)

    Article  MATH  Google Scholar 

  8. Hart-Smith, L.J.: Predictions of the original and truncated maximum-strain failure models for certain fibrous composite laminates. Compos. Sci. Technol. 58, 1151–1178 (1998)

    Article  Google Scholar 

  9. Norris, C.B.: Strength of orthotropic materials subjected to combined stress. Madison, Wisconsin, Forest Products Laboratory, Forest Service, U.S. Department of Agriculture, Report no. 1816 (1962)

  10. Sun, C.T.: Comparative Evaluation of Failure Analysis Methods for Composite Laminates. Report No. DOT/FAA/AR-95/109, Office of Aviation Research, Washington, DC (1996)

  11. Puck, A., Kopp, J., Knops, M.: Guidelines for the determination of the parameters in Puck’s action plane strength criterion. Compos. Sci. Technol. 62, 371–378 (2002)

    Article  Google Scholar 

  12. Davila, C.G., Camanho, P.P., Rose, C.A.: Failure criteria for FRP laminates. J. Compos. Mater. 39, 323–345 (2005)

    Article  Google Scholar 

  13. Catalanotti, G., Camanho, P.P., Marques, A.T.: Three-dimensional failure criteria for fiber-reinforced laminates. Compos. Struct. 95, 63–79 (2013)

    Article  Google Scholar 

  14. Gosse, J.H., Christensen, S.: Strain invariant failure criteria for polymers in composite materials. In: 19th AIAA Applied Aerodynamics Conference, vol 1184. Anaheim, CA, U.S.A. (2001)

  15. Mayes, J.S., Hansen, A.C.: A comparison of multicontinuum theory based failure simulation with experimental results. Compos. Sci. Technol. 64, 517–527 (2004)

    Article  Google Scholar 

  16. Ha, S.K., Jin, K.K., Huang, Y.: Micro-mechanics of failure (MMF) for continuous fiber reinforced composites. J. Compos. Mater. 42, 1873–1895 (2008)

    Article  Google Scholar 

  17. Orifici, A.C., Herszberg, I., Thomson, R.S.: Review of methodologies for composite material modelling incorporating failure. Compos. Struct. 86, 194–210 (2008)

    Article  Google Scholar 

  18. Reddy, J.N., Pandey, A.K.: A first ply failure analysis of composite laminates. Comput. Struct. 25, 371–393 (1987)

    Article  MATH  Google Scholar 

  19. Pandey, A.K., Reddy, J.N.: A post first ply failure analysis of composite laminate. In: Proceedings of the 28th Structures, Structural Dynamics and Materials Conference (AIAA/ASME/ASCE/AHS/ASC), AIAA Paper No. 870898, pp. 788–797 (1992)

  20. Prusty, B.G., Ray, C., Satsangi, S.K.: First ply failure analysis of stiffened panels: a finite element approach. Compos. Struct. 51, 73–81 (2001)

    Article  Google Scholar 

  21. Reddy, Y.S., Reddy, J.N.: Three-dimensional finite element progressive failure analysis of composite laminates under axial extension. J. Compos. Technol. Res. 15, 73–87 (1993)

    Article  Google Scholar 

  22. Pal, P., Bhattacharyya, S.K.: Progressive failure analysis of cross-ply laminated composite plates by finite element method. J. Reinf. Plast. Compos. 26, 465–477 (2007)

    Article  Google Scholar 

  23. Moncada, A.M., Chattopadhyay, A., Bednarcyk, B.A., Arnold, S.M.: Micromechanics-based progressive failure analysis of composite laminates using different constituent failure theories. J. Reinf. Plast. Compos. 31, 1467–1487 (2012)

    Article  Google Scholar 

  24. Akhras, G., Li, W.C.: Progressive failure analysis of thick composite plates using the spline finite strip method. Compos. Struct. 79, 34–43 (2007)

    Article  Google Scholar 

  25. Gangadhara-Prusty, B.: Progressive failure analysis of laminated unstiffened and stiffened composite panels. J. Reinf. Plast. Compos. 24, 633–642 (2005)

    Article  Google Scholar 

  26. Irhirane, E.L.H., Echaabi, J., Aboussaleh, M., Hattabi, M.: Matrix and fibre stiffness degradation of a quasi-isotope graphite epoxy laminate under flexural bending test. J. Reinf. Plast. Compos. 28, 201–223 (2009)

    Article  Google Scholar 

  27. Koc, M., Sonmez, F.O., Ersoy, N., Cinar, K.: Failure behavior of composite laminates under four-point bending. J. Compos. Mater. (2016). doi:10.1177/0021998315624251

  28. Kim, Y., Davalos, J.F., Barbero, E.J.: Progressive failure analysis of laminated composite beams. J. Compos. Mater. 30, 536–560 (1996)

    Article  Google Scholar 

  29. Carrera, E., Giunta, G.: Hierarchical models for failure analysis of plates bent by distributed and localized transverse loadings. J. Zhejiang Univ. Sci. A 9, 600–613 (2008)

    Article  MATH  Google Scholar 

  30. Ochoa, O.O., Engblom, J.J.: Analysis of failure in composites. J. Compos. Sci. Technol. 28, 87–102 (1987)

    Article  Google Scholar 

  31. Hasan, Z., Muliana, A.: Failure and deformation analyses of smart laminated composites. Mech. Compos. Mater. 48, 391–404 (2012)

    Article  Google Scholar 

  32. Santiuste, C., Sánchez-Sáez, S., Barbero, E.: A comparison of progressive-failure criteria in the prediction of the dynamic bending failure of composite laminated beams. Compos. Struct. 92, 2406–2414 (2010)

    Article  Google Scholar 

  33. Ghosh, A., Chakravorty, D.: Prediction of progressive failure behaviour of composite skewed hypar shells using finite element method. J. Struct. 2014, Article ID 147578, 8 (2014)

  34. Daniel, I.M.: Constitutive behavior and failure criteria for composites under static and dynamic loading. Meccanica 50, 429–442 (2015)

    Article  Google Scholar 

  35. Pagano, N.J.: Exact solutions for composite laminates in cylindrical bending. J. Compos. Mater. 3, 398–411 (1969)

    Article  Google Scholar 

  36. Pagano, N.J.: Exact solutions for rectangular bi-direction composites and sandwich plates. J. Compos. Mater. 4, 20–34 (1970)

    Article  Google Scholar 

  37. Stavsky, Y., Loewy, R.: On vibrations of heterogeneous orthotropic shells. J. Sound Vib. 15, 235–236 (1971)

    Article  MATH  Google Scholar 

  38. Reissner, E.: The effects of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12, 69–76 (1945)

    MathSciNet  Google Scholar 

  39. Mindlin, R.D.: Influence of rotatory inertia and shear in flexural motions of isotropic elastic plates. ASME J. Appl. Mech. 18, 1031–1036 (1951)

    MATH  Google Scholar 

  40. Whitney, J.M.: The effects of transverse shear deformation on the bending of laminated plates. J. Compos. Mater. 3, 534–547 (1969)

    Article  Google Scholar 

  41. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and analysis, 2nd edn. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  42. Robbins, J.D.H., Reddy, J.N.: Modeling of thick composites using a layerwise laminate theory. Int. J. Numer. Methods Eng. 36, 655–677 (1993)

    Article  MATH  Google Scholar 

  43. Lezgy-Nazargah, M., Beheshti-Aval, S.B., Shariyat, M.: A refined mixed global–local finite element model for bending analysis of multi-layered rectangular composite beams with small widths. Thin Walled Struct. 49, 351–362 (2011)

    Article  MATH  Google Scholar 

  44. Lezgy-Nazargah, M., Shariyat, M., Beheshti-Aval, S.B.: A refined high-order global–local theory for finite element bending and vibration analyses of the laminated composite beams. Acta Mech. 217, 219–242 (2011)

    Article  MATH  Google Scholar 

  45. Icardi, U.: Higher-order zig-zag model for analysis of thick composite beams with inclusion of transverse normal stress and sublaminates approximations. Compos. Part B 32, 343–354 (2001)

    Article  Google Scholar 

  46. Icardi, U.: A three-dimensional zig-zag theory for analysis of thick laminated beams. Compos. Struct. 52, 123–135 (2001)

    Article  Google Scholar 

  47. Vidal, P., Polit, O.: A family of sinus finite elements for the analysis of rectangular laminated beams. Compos. Struct. 84, 56–72 (2008)

    Article  Google Scholar 

  48. Shariyat, M.: A generalized global–local high-order theory for bending and vibration analyses of sandwich plates subjected to thermo-mechanical loads. Int. J. Mech. Sci. 52, 495–514 (2010)

    Article  Google Scholar 

  49. Li, X., Liu, D.: Generalized laminate theories based on double superposition hypothesis. Int. J. Numer. Methods Eng. 40, 1197–1212 (1997)

    Article  MATH  Google Scholar 

  50. Kapuria, S., Dumir, P.C., Jain, N.K.: Assessment of zigzag theory for static loading, buckling, free and forced response of composite and sandwich beams. Compos. Struct. 64, 317–327 (2004)

    Article  Google Scholar 

  51. Carrera, E.: Historical review of zig-zag theories for multilayered plates and shells. Appl. Mech. Rev. 56, 287–308 (2003)

    Article  Google Scholar 

  52. Carrera, E., Pagani, A.: Multi-line enhanced beam model for the analysis of laminated composite structures. Compos. Part B 57, 112–119 (2014)

    Article  Google Scholar 

  53. Carrera, E., Maiarú, M., Petrolo, M.: Component-wise analysis of laminated anisotropic composites. Int. J. Solids Struct. 49, 1839–1851 (2012)

    Article  Google Scholar 

  54. Biscani, F., Giunta, G., Belouettar, S., Carrera, E., Hu, H.: Variable kinematic beam elements coupled via Arlequin method. Compos. Struct. 93, 697–708 (2011)

    Article  Google Scholar 

  55. Carrera, E., Filippi, M., Zappino, E.: Laminated beam analysis by polynomial, trigonometric, exponential and zig-zag theories. Eur. J. Mech. A. Solids 41, 58–69 (2013)

    Article  MathSciNet  Google Scholar 

  56. Beheshti-Aval, S.B., Lezgy-Nazargah, M.: A coupled refined high-order global-local theory and finite element model for static electromechanical response of smart multilayered/sandwich beams. Arch. Appl. Mech. 82(12), 1709–1752 (2012)

    Article  MATH  Google Scholar 

  57. Beheshti-Aval, S.B., Lezgy-Nazargah, M.: Coupled refined layerwise theory for dynamic free and forced response of piezoelectric laminated composite and sandwich beams. Meccanica 48, 1479–1500 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  58. Beheshti-Aval, S.B., Shahvaghar-Asl, S., Lezgy-Nazargah, M., Noori, M.: A finite element model based on coupled refined high-order global–local theory for static analysis of electromechanical embedded shear-mode piezoelectric sandwich composite beams with various widths. Thin Walled Struct. 72, 139–163 (2013)

    Article  Google Scholar 

  59. Lezgy-Nazargah, M.: Efficient coupled refined finite element for dynamic analysis of sandwich beams containing embedded shear-mode piezoelectric layers. Mech. Adv. Mater. Struct. 23, 337–352 (2016)

    Article  Google Scholar 

  60. Lezgy-Nazargah, M.: Fully coupled thermo-mechanical analysis of bi-directional FGM beams using NURBS isogeometric finite element approach. Aerosp. Sci. Technol. 45, 154–164 (2015)

    Article  Google Scholar 

  61. Lezgy-Nazargah, M., Kafi, L.: Analysis of composite steel-concrete beams using a refined high-order beam theory. Steel Compos. Struct. 18, 1353–1368 (2015)

    Article  Google Scholar 

  62. Lezgy-Nazargah, M.: An isogeometric approach for the analysis of composite steel-concrete beams. Thin Walled Struct. 84, 406–415 (2014)

    Article  Google Scholar 

  63. Greif, R., Chapon, E.: Investigation of successive failure modes in graphite/epoxy laminated composite beams. J. Reinf. Plast. Compos. 12, 602–621 (1993)

    Article  Google Scholar 

  64. Echaabi, J., Trochu, F., Pham, F.X.T., Ouelette, M.: Theroretical and experimental investigation of failure and damage progression of quasi-Isotropic graphite epoxy composites in flexural bending test. J. Reinf. Plast. Compos. 15, 740–755 (1996)

    Google Scholar 

  65. Hibbitt, Karlsson, and Sorensen, Inc. ABAQUS theory manual, user manual and example manual, Version 6.8. Providence, RI (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lezgy-Nazargah.

Ethics declarations

Conflicts of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lezgy-Nazargah, M. Assessment of refined high-order global–local theory for progressive failure analysis of laminated composite beams. Acta Mech 228, 1923–1940 (2017). https://doi.org/10.1007/s00707-017-1807-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1807-6

Navigation