Skip to main content
Log in

Multi-physics analysis of nano-structured ferroelectrics by first-principles simulations

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Unusual ferroelectricity emerges in nanoscale Perovskite oxides owing to their characteristic structures, and it strongly interacts with mechanical stress/strain, namely, “multi-physics property”. For systematic understanding, the ferroelectricity and multi-physics property in the nano-components are discussed in terms of their “macroscopic” component shape (e.g., films, wires, tubes and dots) and “inner” inhomogeneous structure (e.g., domain walls and grain boundaries), based on the first-principles density-functional theory calculations. Moreover, this paper also presents a remarkable interplayed effect of the macroscopic shape and the inner structure on the property through a theoretical investigation on polydomain PbTiO3 ultrathin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hohenberg P., Kohn W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964)

    Article  MathSciNet  Google Scholar 

  2. Kohn W., Sham L.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    Article  MathSciNet  Google Scholar 

  3. Umeno Y., Shimada Kitamura T., Elsässer C.: Ab initio density functional theory study of strain effects on ferroelectricity at PbTiO3 surfaces. Phys. Rev. B 74, 174111 (2006)

    Article  Google Scholar 

  4. Yamashita Y., Mukai K., Yoshinobu J., Lippmaa M., Kinoshita T., Kawasaki M.: Chemical nature of nanostructures of La0.6Sr0.4MnO3 on SrTiO3(100). Surf. Sci. 514, 54–59 (2002)

    Article  Google Scholar 

  5. Shimada T., Tomoda S., Kitamura T.: Ab initio study of ferroelectricity in edged PbTiO3 nanowires under axial tension. Phys. Rev. B 79, 024102 (2009)

    Article  Google Scholar 

  6. Shimada T., Umeno Y., Kitamura T.: Ab initio study of stress-induced domain switching in PbTiO3. Phys. Rev. B 77, 094105 (2008)

    Article  Google Scholar 

  7. Shimada, T., Wang, X., Tomoda, S., Marton, P., Elsässer, C., Kitamura, T.: Coexistence of rectilinear and vortex polarizations at twist boundaries in ferroelectric PbTiO3 from first-principles. Phys. Rev. B (2011) (accepted for publication)

  8. Marton P., Shimada T., Kitamura T., Elsässer C.: First-principles study of the interplay between grain boundaries and domain walls in ferroelectric PbTiO3. Phys. Rev. B 83, 064110 (2011)

    Article  Google Scholar 

  9. Kresse G., Hafner J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993)

    Article  Google Scholar 

  10. Kresse G., Furthmüller J.: Effcient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  Google Scholar 

  11. Blöchl P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)

    Article  Google Scholar 

  12. Kresse G., Joubert D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

    Article  Google Scholar 

  13. Ceperley D.M., Alder B.J.: Ground-state of the electron-gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980)

    Article  Google Scholar 

  14. Fong D.D., Stephenson G.B., Streiffer S.K., Eastman J.A., Auciello O., Fuoss P.H., Thompson C.: Ferroelectricity in ultrathin Perovskite films. Science 304, 1650–1653 (2004)

    Article  Google Scholar 

  15. Monkhorst H.J., Pack J.D.: Special points for Brillouin-zone integration. Phys. Rev. B 13, 5188–5192 (1976)

    Article  MathSciNet  Google Scholar 

  16. Meyer B., Vanderbilt D.: Ab initio study of BaTiO3 and PbTiO3 surfaces in external electric fields. Phys. Rev. B 63, 205426 (2001)

    Article  Google Scholar 

  17. Streiffer S.K., Eastman J.A., Fong D.D., Thompson C., Munkholm A., Murty M.V.R., Auciello O., Bai G.R., Stephenson G.B.: Observation of nanoscale 180 degrees stripe domains in ferroelectric PbTiO3 thin films. Phys. Rev. Lett. 89, 067601 (2002)

    Article  Google Scholar 

  18. Sai N., Kolpak A.M., Rappe A.M.: Ferroelectricity in ultrathin Perovskite films. Phys. Rev. B 72, 020101 (2005)

    Article  Google Scholar 

  19. Zhong W., King-Smith R.D., Vanderbilt D.: Giant LO-TO splittings in Perovskite ferroelectrics. Phys. Rev. Lett. 72, 3618–3621 (1994)

    Article  Google Scholar 

  20. Meyer B., Vanderbilt D.: Ab initio study of ferroelectric domain walls in PbTiO3. Phys. Rev. B 65, 104111 (2002)

    Article  Google Scholar 

  21. Shimada T., Wakahara K., Umeno Y., Kitamura T.: Shell model potential for PbTiO3 and its applicability to surfaces and domain walls. J. Phys.: Condens. Matter 20, 25225 (2008)

    Article  Google Scholar 

  22. Landau L., Lifshitz E.: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjetunion 8, 153 (1935)

    MATH  Google Scholar 

  23. Kittel C.: Theory of the structure of ferromagnetic domains in films and small particles. Phys. Rev. 70, 965 (1946)

    Article  Google Scholar 

  24. Aguado-Puente P., Junquera J.: Ferromagneticlike closure domains in ferro-electric ultrathin films: first-principles simulations. Phys. Rev. Lett. 100, 177601 (2008)

    Article  Google Scholar 

  25. Cohen R.E.: Origin of ferroelectricity in Perovskite oxides. Nature 358, 136–138 (1992)

    Article  Google Scholar 

  26. Kuroiwa Y., Aoyagi S., Sawada A., Harada J., Nishibori E., Takata M., Sakata M.: Evidence for Pb–O covalency in tetragonal PbTiO3. Phys. Rev. Lett. 87, 217601 (2001)

    Article  Google Scholar 

  27. Wang J., Kamlah M., Zhang T.Y.: Phase field simulations of low-dimensional ferroelectrics. Acta Mech. 214, 49–59 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Shimada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimada, T., Wang, X. & Kitamura, T. Multi-physics analysis of nano-structured ferroelectrics by first-principles simulations. Acta Mech 224, 1261–1270 (2013). https://doi.org/10.1007/s00707-013-0873-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0873-7

Keywords

Navigation