Skip to main content
Log in

Simple and efficient routes to substituted oxazolidine and spiro-oxindole systems by one-pot synthetic strategies

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Simple and efficient strategies towards the synthesis of substituted spiro-oxindole and oxazolidine systems by one-pot multi-component catalyst-free reactions utilising aryl aldehydes and α-amino acids have been developed. Owing to their complicated structure and ring strain spiro-oxindole moieties are not easily synthesised. In either route 1,3-dipolar cycloadditions involving non-stabilised azomethine ylides as intermediates, generated in situ from amino acids and aldehydes, with the dipolarophile present in the reaction mixture viz. (E)-β-nitrostyrene, were utilised. The route to substituted oxazolidines involved cycloaddition to the C=O bond of a second molecule of the aldehyde.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kanemasa S, Tsuge O (1993) In: Curran DP (ed) Advances in cycloaddition, vol 3. JAI Press, Greenwich, p 99

    Google Scholar 

  2. Grigg R, Sridharan V (1993) In: Curran DP (ed) Advances in cycloaddition, vol 3. JAI Press, Greenwich, p 161

    Google Scholar 

  3. Padwa A (1991) In: Trost BM, Fleming I (eds) Comprehensive organic synthesis, vol 4. Pergamon Press, Oxford, p 1069

    Chapter  Google Scholar 

  4. Wade PA (1991) In: Trost BM, Fleming I (eds) Comprehensive organic synthesis, vol 4. Pergamon Press, Oxford, p 1111

    Chapter  Google Scholar 

  5. Longeon A, Guyot M, Vacelet J (1990) Experentia 46:548

    Article  CAS  Google Scholar 

  6. Klumpp DA, Yeung KY, Prakash GKS, Olah GA (1998) J Org Chem 63:4481

    Article  CAS  Google Scholar 

  7. Fejes I, Toke L, Blasko G, Nyerges M, Pak CS (2000) Tetrahedron 56:8545

    Article  CAS  Google Scholar 

  8. James DM, Kunze HB, Faulkner DJ (1991) J Nat Prod 54:1137

    Article  CAS  Google Scholar 

  9. Jossang A, Jossang P, Hadi HA, Sevenet T, Bodo B (1991) J Org Chem 56:6527

    Article  CAS  Google Scholar 

  10. James MNG, Williams GJB (1972) Can J Chem 50:2407

    Article  CAS  Google Scholar 

  11. Elderfield RC, Gilman RE (1972) Phytochemistry 11:339

    Article  CAS  Google Scholar 

  12. Cui CB, Kakeya H, Okada G, Onose R, Osada H (1996) J Antibiot 49:527

    Article  CAS  Google Scholar 

  13. Okita T, Isobe M (1994) Tetrahedron 50:11143

    Article  CAS  Google Scholar 

  14. Rosenmond P, Hosseini-Merescht M, Bub C (1994) Liebigs Ann Chem 2:151

    Article  Google Scholar 

  15. Kornet MJ, Thio AP (1976) J Med Chem 19:892

    Article  CAS  Google Scholar 

  16. Zarghi A, Arefi H, Dadrass OG, Torabi S (2010) Med Chem Res 19:782

    Article  CAS  Google Scholar 

  17. Halder AK, Jha T (2010) Bioorg Med Chem Lett 20:6082

    Article  CAS  Google Scholar 

  18. Krizevski R, Bar E, Shalit O, Sitrit Y, Ben-Shabat S, Lewinsohn E (2010) Phytochemistry 71:895

    Article  CAS  Google Scholar 

  19. Nakano H, Osone K, Takeshita M, Kwon E, Seki C, Matsuyama H, Takano N, Kohari Y (2010) Chem Commun 46:4827

    Article  CAS  Google Scholar 

  20. Tilford CH, Van Campen J, Shelton RS (1947) J Am Chem Soc 69:2902

    Article  CAS  Google Scholar 

  21. Nouguier R, Crozet M, Vanelle P, Maldonad J (1985) Tetrahedron Lett 26:5523

    Article  CAS  Google Scholar 

  22. Buur A, Bundgaard H (1987) Arch Pharm Chem Sci 15:76

    CAS  Google Scholar 

  23. Mattson A, Norin T (1994) Synth Commun 24:1489

    Article  CAS  Google Scholar 

  24. Barbulescu N, Moga SG, Sintamarian A, Cuza O, Vasilescu V (1984) 1-Aza-3,7-dioxa-5-carbamoyloxymethyl-8-(4-methoxyphenyl)bicyclo[3.3.0]octane-2-spirocyclohexane derivatives. Romanian Patent RO 83939

  25. Barbulescu N, Moga SG, Sintamarian A, Cuza O, Vasilescu V (1985) Chem Abstr 102:149252

    Google Scholar 

  26. Carruthers W (1990) Cycloaddition reactions in organic synthesis, vol 6. Pergamon Press, Oxford, p 269

    Google Scholar 

  27. Padwa A, Weingarten MD (1996) Chem Rev 96:223

    Article  CAS  Google Scholar 

  28. Broggini G, Zecchi G (1999) Synthesis 6:905

  29. Karlsson S, Högberg HE (2001) Org Prep Proced Int 33:103

    Article  CAS  Google Scholar 

  30. Padwa A (2003) In: Pearson WH (ed) Synthetic applications of 1,3-dipolar cycloaddition chemistry toward heterocycles and natural products. Wiley, New York

    Google Scholar 

  31. Oh K, Li JY, Ryu J (2010) Org Biomol Chem 8:3015

    Article  CAS  Google Scholar 

  32. Orsini F, Pelizzoni F, Forte M, Destro R, Gariboldi P (1988) Tetrahedron 44:519

    Article  CAS  Google Scholar 

  33. Felluga F, Pitacco G, Visintin C, Valentin E (1997) Helv Chim Acta 80:1457

    Article  CAS  Google Scholar 

  34. Ning F, Anderson RJ, Hibbs DE, Groundwater PW (2010) Tetrahedron Lett 51:843

    Article  CAS  Google Scholar 

  35. Graaff C, Ruijter E, Orru RVA (2012) Chem Soc Rev 41:3969

    Article  Google Scholar 

  36. Armstrong RW, Combs AP, Tempest PA, Brown SD, Keating TA (1996) Acc Chem Res 29:123

    Article  CAS  Google Scholar 

  37. Fokas D, Ryan WJ, Casebier DS, Coffen DL (1998) Tetrahedron Lett 39:2235

    Article  CAS  Google Scholar 

  38. Cottrell IF, Hands D, Kennedy DJ, Paul KJ, Wright SHB, Hoogsteen K (1991) J Chem Soc Perkin Trans 1:1091

    Article  Google Scholar 

  39. Cravotto G, Giovenzana GB, Pilati T, Sisti M, Palmisano G (2001) J Org Chem 66:8447

    Article  CAS  Google Scholar 

  40. Enders D, Meyer I, Runsink J, Raabe G (1998) Tetrahedron 54:10733

    Article  CAS  Google Scholar 

  41. Gayen B, Banerji A (2012) J Indian Chem Soc 89:1151

    Google Scholar 

  42. Biswas KP, Bandyopadhyay D, Prangé T, Neuman A, Banerji A (2011) Synth Commun 41:1146

    Article  CAS  Google Scholar 

  43. Banerji A, Sengupta S, Nayak A, Biswas PK, Bhattacharya B, Dasgupta S, Saha R, Prangé T, Neuman A (2007) Indian J Chem Sect B 46:1495

    Google Scholar 

  44. Acharjee N, Banerji A, Gayen B (2011) J Indian Chem Soc 12:88

    Google Scholar 

  45. Banerji A, Biswas PK, Gupta M, Saha R, Banerji J (2007) J Indian Chem Soc 84:1004

    CAS  Google Scholar 

  46. Poornachandran M, Raghunathan R (2007) Synth Commun 37:2507

    Article  CAS  Google Scholar 

  47. Alimohammadi K, Sarrafi Y, Tajbakhsh M, Yeganegi S, Hamzehloueian M (2011) Tetrahedron 67:1589

    Article  CAS  Google Scholar 

  48. Poornachandran M, Muruganantham R, Raghunathan R (2006) Synth Commun 36:141

    Article  CAS  Google Scholar 

  49. Laihia K, Valkonen A, Kolehmainen E, Antonov A, Zhukov D, Fedosov I, Nikiforov V (2006) J Mol Struct 800:100

    Article  CAS  Google Scholar 

  50. Rajesh SM, Perumal S, Menéndez JC, Yogeeswari P, Sriram D (2011) Med Chem Commun 2:626

    Article  CAS  Google Scholar 

  51. Chen G, Yang J, Gao S, He H, Li S, Di Y, Chang Y, Lu Y, Hao X (2012) Mol Divers 16:151

    Article  Google Scholar 

  52. Chen G, Miao Y, Zhou R, Zhang L, Zhang J, Hao X (2013) Res Chem Intermed 39:2445

    Article  CAS  Google Scholar 

  53. Coldham I, Hufton R (2005) Chem Rev 105:2765

    Article  CAS  Google Scholar 

  54. Tan J, Xu X, Zhang L, Li Y, Liu Q (2009) Angew Chem 121:2912

    Article  Google Scholar 

  55. Zhang Z, Zhang Q, Sun S, Xiong T, Liu Q (2007) Angew Chem 119:1756

    Article  Google Scholar 

  56. Zhang Q, Zhang Z, Yan Z, Liu Q, Wang T (2007) Org Lett 9:3651

    Article  CAS  Google Scholar 

  57. Padasani RT, Padasani P, Jain A, Arora K (2006) Indian J Chem 45B:1204

    Google Scholar 

  58. Ghandi M, Rezaei SJT, Yari A, Taheri A (2008) Tetrahedron Lett 49:5899

    Article  CAS  Google Scholar 

  59. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  60. Lee C, Yang W, Parr RG (1988) Phys Rev B 7:785

    Article  Google Scholar 

  61. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewsk VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) GAUSSIAN 03. Gaussian Inc, Pittsburgh

    Google Scholar 

Download references

Acknowledgments

The authors thank the University of Calcutta for providing laboratory and spectroscopic facilities. B. Gayen thanks the Council of Scientific and Industrial Research (CSIR), New Delhi, India. for the award of Senior Research Fellowship. B. Gayen also thanks to Dr. K. P. Dhara.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avijit Banerji.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2774 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayen, B., Banerji, A. Simple and efficient routes to substituted oxazolidine and spiro-oxindole systems by one-pot synthetic strategies. Monatsh Chem 145, 1953–1965 (2014). https://doi.org/10.1007/s00706-014-1269-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-014-1269-7

Keywords

Navigation