Skip to main content

Advertisement

Log in

Tuning the electronic structures and related properties of phenothiazine-based donor-π-acceptor dyes for dye-sensitized solar cells: a theoretical study

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Two phenothiazine-based organic D-π-A dyes V5 and V7 used in DSSCs with difference in π spacer were theoretically studied and verified using density functional theory and time-dependent density functional theory to shed light on how the π spacer influences the performance of the dye. The change of short-circuit current density (J SC) and open-circuit photovoltage (V OC) between V5 and V7 was demonstrated by means of the light-harvesting efficiency and the energy differences eV OC between E LUMO and E CB, respectively. A novel dye namely VX was designed by replacing the thiophene unit in V7 with an electron-rich 3,4-ethylenedioxythiophene unit. The theoretical results revealed that compared with V7, the VX dye is expected to show better performance in the DSSC field.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M (1991) Nature 353:737

    Article  Google Scholar 

  2. Nazeeruddin MK, Angelis FD, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Grätzel M (2005) J Am Chem Soc 127:16835

    Article  CAS  Google Scholar 

  3. Gao F, Wang Y, Shi D, Zhang J, Wang M, Jing X, Humphry-Baker R, Wang P, Zakeeruddin SM, Grätzel M (2008) J Am Chem Soc 130:10720

    Article  CAS  Google Scholar 

  4. Chen C-Y, Wang M, Li J-Y, Pootrakulchote N, Alibabaei L, Ngoc-le C-H, Decoppet J-D, Tsai J-H, Grätzel C, Wu C-G, Zakeeruddin SM, Grätzel M (2009) ACS Nano 3:3103

    Article  CAS  Google Scholar 

  5. Amao Y, Komori T (2004) Biosens Bioelectron 19:843

    Article  CAS  Google Scholar 

  6. Mishra A, Fischer MKR, Bäuerle P (2009) Angew Chem Int Ed 48:2474

    Article  CAS  Google Scholar 

  7. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Chem Rev 110:6595

    Article  CAS  Google Scholar 

  8. Liang M, Chen J (2013) Chem Soc Rev 42:3453

    Article  CAS  Google Scholar 

  9. Wan Z, Jia C, Zhang J, Duan Y, Lin Y, Shi Y (2012) J Power Sources 199:426

    Article  CAS  Google Scholar 

  10. Namuangruk S, Fukuda R, Ehara M, Meeprasert J, Khanasa T, Morada S, Kaewin T, Jungsuttiwong S, Sudyoadsuk T, Promarak V (2012) J Phys Chem C 116:25653

    Article  CAS  Google Scholar 

  11. Jungsuttiwong S, Tarsang R, Sudyoadsuk T, Promarak V, Khongpracha P, Namuangruk S (2013) Org Electron 14:711

    Article  CAS  Google Scholar 

  12. Nazeeruddin MK, Péchy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Grätzel M (2001) J Am Chem Soc 123:1613

    Article  CAS  Google Scholar 

  13. Kim SH, Kim HW, Sakong C, Namgoong J, Park SW, Ko MJ, Lee CH, Lee WI, Kim JP (2011) Org Lett 13:5784

    Article  CAS  Google Scholar 

  14. Chang YJ, Chou P-T, Lin Y-Z, Watanabe M, Yang C-J, Chin T-M, Chow TJ (2012) J Mater Chem 22:21704

    Article  CAS  Google Scholar 

  15. Marszalek M, Nagane S, Ichake A, Humphry-Baker R, Paul V, Zakeeruddin SM, Grätzel M (2012) J Mater Chem 22:889

    Article  CAS  Google Scholar 

  16. Iqbal Z, Wu W-Q, Kuang D-B, Wang L, Meier H, Cao D (2013) Dyes Pigm 96:722

    Article  CAS  Google Scholar 

  17. Xu J, Wang L, Liang G, Bai Z, Wang L, Xu W, Shen X (2011) Spectrochim Acta A Mol Biomol Spectrosc 78:287

    Article  Google Scholar 

  18. Xu J, Zhu L, Wang L, Liu L, Bai Z, Wang L, Xu W (2012) J Mol Model 18:1767

    Article  CAS  Google Scholar 

  19. Xu J, Zhu L, Fang D, Chen B, Liu L, Wang L, Xu W (2012) ChemPhysChem 13:3320

  20. Howie WH, Claeyssens F, Miura H, Peter LM (2008) J Am Chem Soc 130:1367

    Article  CAS  Google Scholar 

  21. King BF, Weinhold F (1995) J Chem Phys 103:333

    Article  CAS  Google Scholar 

  22. Gutowski M, van Lenthe JH, van Duijneveldt FB (1993) J Chem Phys 98:4728

    Article  CAS  Google Scholar 

  23. Yang C, Wang H (2008) Struct Chem 19:843

    Article  CAS  Google Scholar 

  24. Ravikumar C, Joe IH, Jayakumar VS (2008) Chem Phys Lett 460:552

    Article  CAS  Google Scholar 

  25. Jia C, Wan Z, Zhang J, Li Z, Yao X, Shi Y (2012) Spectrochim Acta A Mol Biomol Spectrosc 86:387

    Article  CAS  Google Scholar 

  26. Bahers TL, Pauporté T, Scalmani G, Adamo C, Ciofini I (2009) Phys Chem Chem Phys 11:11276

    Article  Google Scholar 

  27. Cahen D, Hodes G, Grätzel M, Guillemoles JF, Riess I (2000) J Phys Chem B 104:2053

    Article  CAS  Google Scholar 

  28. Guillaumont D, Nakamura S (2000) Dyes Pigm 46:85

    Article  CAS  Google Scholar 

  29. Zhang C-R, Liu Z-J, Chen Y-H, Chen H-S, Wu Y-Z, Feng W-J, Wang D-B (2010) Curr Appl Phys 10:77

    Article  CAS  Google Scholar 

  30. Zhang G, Bala H, Cheng Y, Shi D, Lv X, Yu Q, Wang P (2009) Chem Comm 45:2198

  31. Zeng W, Cao Y, Bai Y, Wang Y, Shi Y, Zhang M, Wang F, Pan C, Wang P (2010) Chem Mater 22:1915

    Article  CAS  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JJE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) GAUSSIAN 09. Gaussian Inc, Wallingford

    Google Scholar 

  33. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  34. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  35. Møller C, Plesset MS (1934) Phys Rev 46:618

    Article  Google Scholar 

  36. Yanai T, Tew D, Handy N (2004) Chem Phys Lett 393:51

    Article  CAS  Google Scholar 

  37. Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327

    Article  CAS  Google Scholar 

  38. Barone V, Cossi M (1998) J Phys Chem A 102:1995

    Article  CAS  Google Scholar 

  39. Gorelsky SI (2013) SWizard, Rev. 5.0. University of Ottawa, Ottawa, Canada

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (No. 51003082 and No. 61108033), the Natural Science Foundation of Hubei Province (No. 2012FFA098 and No. 2013CFB064), the Young People Project of Wuhan Science and Technology Bureau (No. 201271031381) and the Science and Technology Research Project of Education Department of Hubei Province (Q20132601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, G., Yuan, Y., Wang, D. et al. Tuning the electronic structures and related properties of phenothiazine-based donor-π-acceptor dyes for dye-sensitized solar cells: a theoretical study. Monatsh Chem 145, 1737–1744 (2014). https://doi.org/10.1007/s00706-014-1260-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-014-1260-3

Keywords

Navigation