Skip to main content

Advertisement

Log in

Role of π conjugation in n-hexylphenothiazine dyes for solar cell—a density functional theory approach

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The N-hexylphenothiazine-based organic sensitizers are designed for Dye Sensitized Solar Cell (DSSC). The different π spacer (thiophene and cyanovinyl) groups were substituted in third and seventh position N-hexylphenothiazine. From the structural modifications, the π spacer effect was analyzed. The optoelectronic properties of the dyes were tuned by structural modifications. The optimized geometry, highest occupied molecular orbital and lowest unoccupied molecular orbital energy level, and absorption spectra were calculated. The natural bond orbital analysis gives the net electron transfer from the donor to acceptor. The electrochemical properties and light-harvesting efficiency of the designed dye sensitizers were calculated. The π spacer increase resulted in the redshift of the absorption peak. Based on the density functional theory and time dependant density functional theory calculations, the designed dye molecules are evaluated for DSSC application.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4 (a-d)
Fig. 5 (a-d)

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

Code availability

N/A

References

  1. O’Regan B, Grätzel M (1991). Nature 353:737–740

    Article  Google Scholar 

  2. Nazeeruddin MK, Klein C, Liska P, Gratzel M (2005) Synthesis of novel ruthenium sensitizers and their application in dye-sensitized solar cells. Coord Chem Rev 249:1460–1467

    Article  CAS  Google Scholar 

  3. Nazeeruddin MK, Angelis FD, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Grätzel M (2005) Combined experimental and DFT-TDDFT computational study of photo electrochemical cell ruthenium sensitizers. J Am Chem Soc 127:16835–16847

    Article  CAS  Google Scholar 

  4. Lan Y-K, Huang C-I (2008) A theoretical study of the charge transfer behavior of the highly regioregular poly-3-hexylthiophene in the ordered state. J Phys Chem B 112:14857–14862

    Article  CAS  Google Scholar 

  5. Zaumseil J, Sirringhaus H (2007) Electron and ambipolar transport in organic field- effect transistors. Chem Rev 107:1296–1323

    Article  CAS  Google Scholar 

  6. Chaurasia S, Lin J-T (2016) Metal-free sensitizers for dyesensitized solar cells. Chem Rec 16:1311e1336

    Article  Google Scholar 

  7. Mahmood A (2016) Triphenylamine based dyes for dye sensitized solar cells: a review. Sol Energy 123:127e144

    Article  Google Scholar 

  8. Labat F, Le Bahers T, Ciofini I, Adamo C (2012). Acc Chem Res 45:1268

    Article  CAS  Google Scholar 

  9. Wu K, Liu C, Mang C (2007). Opt Mater 29:1129–1137

    Article  CAS  Google Scholar 

  10. Kolev TM, Yancheva DY, Stamboliyska BA, Dimitrov MD, Wortmann R (2008). Chem Phys 348:45–53

    Article  CAS  Google Scholar 

  11. Adamo C, Jacquemin D (2013). Chem Soc Rev 42:845–856

    Article  CAS  Google Scholar 

  12. Pastore M, Mosconi E, Angelis FD, Gratze M, Phys J (2010). Chem C 114:7205–7212

    CAS  Google Scholar 

  13. Li W, Wang J, Chen J, Bai FQ, Zhang HX (2014) Spectrochim. Acta Part A 118:1144–1151

    Article  CAS  Google Scholar 

  14. Basheer B, Mathew D, George BK, Nair CR (2014) Sol. Energy 108:479–507

    CAS  Google Scholar 

  15. Xu Z, Li Y, Zhang W, Yuan S, Hao L, Xu T, Lu X (2019). Spectrochim Acta A Mol Biomol Spectrosc 212:272–280

    Article  CAS  Google Scholar 

  16. Wang W, Li X, Lan J, Wu D, Wang R, You J (2018) Construction of 3, 7-dithienyl phenothiazine-based organic dyes via multistep direct C–H arylation reactions. J Org Chem 83:8114–8126

    Article  CAS  Google Scholar 

  17. Nagarajan B, Kushwaha S, Elumalai R, Mandal S, Ramanujam K, Raghavachari D (2017). J Mater Chem A 5:10289–10300

    Article  CAS  Google Scholar 

  18. Feng S, Li QS, Niehaus TA, Li ZS (2017). Org Electron 42:234–243

    Article  CAS  Google Scholar 

  19. Arunkumar A, Shanavas S, Anbarasan PM (2018). J Comput Electron 17:1410–1420

    Article  CAS  Google Scholar 

  20. Busaidi IJA, Haque A, Rasbi NKA, Khan MS (2019) Phenothiazine-based derivatives for optoelectronic applications: a review. Synth Met 257:116189

    Article  Google Scholar 

  21. Chen, YC, Kuo, YT & Liang, CJ , RSC advances, 2018, 8, 9783–9789

  22. Petersson, A, Bennett, A, Tensfeldt, TG, Al-Laham, MA, Shirley, WA & Mantzaris, J, J Chem Physics, 1988, 89, 2193–2218

  23. Petersson GA, Al-Laham MA (1991). J Chem Phys 94:6081–6090

    Article  CAS  Google Scholar 

  24. Yanai T, Tew DP, Handy NC (2004). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JJE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Ö Farkas, Foresman JB, Ortiz JV, Cioslowski J & Fox DJ, Gaussian 09, 2009, Revision D.01, Gaussian, Inc., Wallingford CT.

  26. Dennington R, Keith T, Millam J, GaussView, 2009, Version 5 Semichem Inc., Shawnee Mission, KS

  27. Fukui, K, science, 1982, 218, 747–754

  28. Pounraj P, Mohankumar V, Pandian MS, Ramasamy P (2018). J Mol Graph Model 79:235–253

    Article  CAS  Google Scholar 

  29. Mohankumar V, Pounraj P, Pandian MS, Ramasamy P (2018). J Mol Struct 1195:494–505

    Article  Google Scholar 

  30. Preat J, Michaux C, Lewalle A, Perpète EA, Jacquemin D (2008). Chem Phys Lett 451:37–42

    Article  CAS  Google Scholar 

  31. Balanay MP, Kim DH (2009). J Mol Struct THEOCHEM 910:20–26

    Article  CAS  Google Scholar 

  32. Janak JF (1978). Phys Rev B 18(12):7165

    Article  CAS  Google Scholar 

  33. Weinhold, F, J Comp Chem, 2012, 33, 2363–2379

  34. Tai, CK, Chen, YJ, Chang, HW, Yeh, PL & Wang, BC, Comp Theor Chem, 2011, 971, 42–50

  35. Cai-Rong Z, Zi-Jiang L, Yu-Hong C, Hong-Shan C, You-Zhi W, Li-Hua Y (2009). J Mol Struct THEOCHEM 899:86–93

    Article  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally to the work.

We confirm that the manuscript has been read and approved by all named authors.

We confirm that the order of authors listed in the manuscript has been approved by all named authors.

Corresponding author

Correspondence to V. Mohankumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohankumar, V., Pounraj, P., Pandian, M.S. et al. Role of π conjugation in n-hexylphenothiazine dyes for solar cell—a density functional theory approach. J Mol Model 27, 151 (2021). https://doi.org/10.1007/s00894-021-04769-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04769-2

Keywords

Navigation