Skip to main content
Log in

The effect of anchoring group number on molecular structures and absorption spectra of triphenylamine sensitizers: a computational study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The molecular structures and absorption spectra of triphenylamine dyes containing different numbers of anchoring groups (S1-S3) were investigated by density functional theory (DFT) and time-dependent DFT. The calculated geometries indicate that strong conjugation is formed in the dyes. The interfacial charge transfer between the TiO2 electrode and S1-S3 are electron injection processes from the excited dyes to the semiconductor conduction band. The simulated absorption bands are assigned to π → π* transitions according to the qualitative agreement between the experimental and calculated results. The effect of anchoring group number on the molecular structures, absorption spectra and photovoltaic performance were comparatively discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O'Regan B, Grätzel M (1991) Nature 353:737–740

    Article  Google Scholar 

  2. Nazeeruddin MK, Kay A, Rodicio, Humpbry-Baker R, Miiller E, Liska P, Vlachopoulos N, Grätzel M (1993) J Am Chem Soc 115:6382–6390

    Article  CAS  Google Scholar 

  3. Nazeeruddin MK, Péchy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Grätzel M (2001) J Am Chem Soc 123:1613–1624

    Article  CAS  Google Scholar 

  4. Nazeeruddin MK, Angelis FD, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Grätzel M (2005) J Am Chem Soc 127:16835–16847

    Article  CAS  Google Scholar 

  5. Gao F, Wang Y, Shi D, Zhang J, Wang M, Jing X, Humphry-Baker R, Wang P, Zakeeruddin SM, Grätzel M (2008) J Am Chem Soc 130:10720–10728

    Article  CAS  Google Scholar 

  6. Chen CY, Wang M, Li JY, Pootrakulchote N, Alibabaei L, Ngoc-le CH, Decoppet JD, Tsai JH, Grätzel C, Wu CG, Zakeeruddin SM, Grätzel M (2009) ACS Nano 3:3103–3109

    Article  CAS  Google Scholar 

  7. Amao Y, Komori T (2004) Biosensors Bioelectron 19:843–847

    Article  CAS  Google Scholar 

  8. Horiuchi T, Miura H, Sumioka K, Uchida S (2004) J Am Chem Soc 126:12218–12219

    Article  CAS  Google Scholar 

  9. Hara K, Kurashige M, Dan-oh Y, Kasada C, Shinpo A, Suga S, Sayama K, Arakawa H (2003) New J Chem 27:783–785

    Article  CAS  Google Scholar 

  10. Horiuchi T, Miura H, Uchida S (2003) Chem Commun 3036–3037

  11. Horiuchi T, Miura H, Uchida S (2004) J Photochem Photobiol A Chem 164:29–32

    Article  CAS  Google Scholar 

  12. Kitamura T, Ikeda M, Shigaki K, Inoue T, Anderson NA, Ai X, Lian T, Yanagida S (2004) Chem Mater 16:1806–1812

    Article  CAS  Google Scholar 

  13. Hagberg DP, Yum J-H, Lee H, Angelis FD, Marinado T, Karlsson KM, Humphry-Baker R, Sun L, Hagfeldt A, Grätzel M, Nazeeruddin MK (2008) J Am Chem Soc 130:6259–6266

    Article  CAS  Google Scholar 

  14. Tian H, Yang X, Chen R, Zhang R, Hagfeldt A, Sun L (2008) J Phys Chem C 112:11023–11033

    Article  CAS  Google Scholar 

  15. Mishra A, Fischer MKR, Bäuerle P (2009) Angew Chem Int Edn 48:2474–2499

    Article  CAS  Google Scholar 

  16. Ning Z, Tian H (2009) Chem Commun 5483–5495

  17. Shang H, Luo Y, Guo X, Huang X, Zhan X, Jiang K, Meng Q (2010) Dyes Pigm 87:249–256

    Article  CAS  Google Scholar 

  18. Barolo C, Nazeeruddin MK, Fantacci S, Di Censo D, Comte P, Liska P, Viscardi G, Quagliotto P, De Angelis F, Ito S, Gratzel M (2006) Inorg Chem 45:4642–4653

    Article  CAS  Google Scholar 

  19. Onozawa-Komatsuzaki N, Kitao O, Yanagida M, Himeda Y, Sugihara H, Kasuga K (2006) New J Chem 30:689–697

    Article  CAS  Google Scholar 

  20. Monat JE, Rodriguez JH, McCusker JK (2002) J Phys Chem A 106:7399–7406

    Article  CAS  Google Scholar 

  21. Fantacci S, De Angelis F, Selloni A (2003) J Am Chem Soc 125:4381–4387

    Article  CAS  Google Scholar 

  22. Angelis FD, Fantacci S, Selloni A, Nazeeruddin MK (2005) Chem Phys Lett 415:115–120

    Article  Google Scholar 

  23. Xu Y, Chen WK, Cao MJ, Liu SH, Li JQ, Philippopoulos AI, Falaras P (2006) Chem Phys 330:204–211

    Article  CAS  Google Scholar 

  24. Kurashige Y, Nakajima T, Kurashige S, Hirao K, Nishikitani Y (2007) J Phys Chem A 111:5544–5548

    Article  CAS  Google Scholar 

  25. Hara K, Sato T, Katoh R, Furube A, Ohga Y, Shinpo A, Suga S, Sayama K, Sugihara H, Arakawa H (2003) J Phys Chem B 107:597–606

    Article  CAS  Google Scholar 

  26. Zhang X, Zhang JJ, Xia YY (2008) J Photochem Photobiol A Chem 194:167–172

    Article  CAS  Google Scholar 

  27. Liu Z (2008) J Mol Struct Theochem 862:44–48

    Article  CAS  Google Scholar 

  28. Alexander BD, Dines TJ, Longhurst RW (2008) Chem Phys 352:19–27

    Article  CAS  Google Scholar 

  29. Lee C, Sohlberg K (2010) Chem Phys 367:7–19

    Article  CAS  Google Scholar 

  30. Ma R, Guo P, Cui H, Zhang X, Nazeeruddin MK, Grätzel M (2009) J Phys Chem A 113:10119–10124

    Article  CAS  Google Scholar 

  31. Gao Y, Sun S, Han K (2009) Spectrochim Acta A Mol Biomol Spectrosc 71:2016–2022

    Article  Google Scholar 

  32. Kumar PS, Vasudevan K, Prakasam A, Geetha M, Anbarasan PM (2010) Spectrochim Acta A Mol Biomol Spectrosc 77:45–50

    Article  Google Scholar 

  33. Xu J, Wang L, Liang G, Bai Z, Wang L, Xu W, Shen X (2011) Spectrochim Acta A Mol Biomol Spectrosc 78:287–293

    Article  Google Scholar 

  34. Senthilkumar P, Anbarasan PM (2011) J Mol Model 17:49–58

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, M.A. Robb, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima Y, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox IE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian Inc, Wallingford, CT

  36. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  37. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  38. Gorelsky SI (2010) University of Ottawa, Ottawa, Canada

  39. Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327–335

    Article  CAS  Google Scholar 

  40. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  41. Howie WH, Claeyssens F, Miura H, Peter LM (2008) J Am Chem Soc 130:1367–1375

    Article  CAS  Google Scholar 

  42. King BF, Weinhold F (1995) J Chem Phys 103:333–347

    Article  CAS  Google Scholar 

  43. Lundqvist MJ, Nilsing M, Persson P, Lunell S (2006) Int J Quantum Chem 106:3214–3234

    Article  CAS  Google Scholar 

  44. Bahers TL, Pauporté T, Scalmani G, Adamo C, Ciofini I (2009) Phys Chem Chem Phys 11:11276–11284

    Article  Google Scholar 

  45. Watson DF, Meyer GJ (2005) Annu Rev Phys Chem 56:119–156

    Article  CAS  Google Scholar 

  46. Boschloo G, Hagfeldt A (2005) J Phys Chem B 109:12093–12098

    Article  CAS  Google Scholar 

  47. Zhang X, Zhang J-J, Xia Y-Y (2007) J Photochem Photobiol A Chem 185:283–288

    Article  CAS  Google Scholar 

  48. Asbury JB, Hao E, Wang Y, Ghosh HN, Lian T (2001) J Phys Chem B 105:4545–4557

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (No.51003082), and the Educational Commission of Hubei Province (Q20101606). The authors gratefully wish to express their thanks to the reviewers for critically reviewing the manuscript and making important suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Zhu, L., Wang, L. et al. The effect of anchoring group number on molecular structures and absorption spectra of triphenylamine sensitizers: a computational study. J Mol Model 18, 1767–1777 (2012). https://doi.org/10.1007/s00894-011-1208-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1208-z

Keywords

Navigation