Skip to main content

Advertisement

Log in

Synergistic effect of programmed cell death protein 1 blockade and secondary lymphoid tissue chemokine in the induction of anti-tumor immunity by a therapeutic cancer vaccine

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

An Erratum to this article was published on 24 November 2016

Abstract

The use of DNA vaccines has become an attractive approach for generating antigen-specific cytotoxic CD8+ T lymphocytes (CTLs), which can mediate protective antitumor immunity. The potency of DNA vaccines encoding weakly immunogenic tumor-associated antigens (TAAs) can be improved by using an adjuvant injected together with checkpoint antibodies. In the current study, we evaluated whether the therapeutic effects of a DNA vaccine encoding human papilloma virus type 16 (HPV-16) E7 can be enhanced by combined application of an immune checkpoint blockade directed against the programmed death-1 (PD-1) pathway and secondary lymphoid tissue chemokine (SLC) also known as CCL21 adjuvant, in a mouse cervical cancer model. The therapeutic effects of the DNA vaccine in combination with CCL21 adjuvant plus PD-1 blockade was evaluated using a tumor growth curve. To further investigate the mechanism underlying the antitumor response, cytolytic and lymphocyte proliferation responses in splenocytes were measured using non-radioactive cytotoxicity and MTT assays, respectively. Vascular endothelial growth factor (VEGF) and IL-10 expression in the tumor and the levels of IFN-γ and IL-4 in supernatants of spleno-lymphocyte cultures were measured using ELISA. The immune efficacy was evaluated by in vivo tumor regression assay. The results showed that vaccination with a DNA vaccine in combination with the CCL21 adjuvant plus PD-1 blockade greatly enhanced cytotoxic T lymphocyte production and lymphocyte proliferation rates and greatly inhibited tumor progression. Moreover, the vaccine in combination with adjuvant and blockade significantly reduced intratumoral VEGF, IL-10 and splenic IL-4 but induced the expression of splenic IFN-γ. This formulation could be an effective candidate for a vaccine against cervical cancers and merits further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HPV:

Human papilloma virus

APC:

Antigen-presenting cell

CTL:

Cytolytic CD8+T lymphocyte

DC:

Dendritic cells

IFN- γ:

Interferon γ

IL-4:

Interleukin 4

VEGF:

Vascular endothelial growth factor

IL-10:

Interleukin 10

LDH:

Lactate dehydrogenase

MTT:

3[4,5-Dimethylthiazol-2-ll]-2,5-diphenyltetrazolium bromide, thiazolyl-blue

DMSO:

Dimethyl sulfoxide

OD:

Optical density

FBS:

Fetal bovine serum

RPMI:

1640 Roswell Park Memorial Institute (name of the medium)

Th:

T helper

PD-1:

Programmed death-1

SLC:

Secondary lymphoid tissue chemokine

TAA:

Tumor-associated antigen

TIL:

Tumor-infiltrating lymphocyte

References

  1. Bahrami AA, Ghaemi A, Tabarraei A, Sajadian A, Gorji A, Soleimanjahi H (2014) DNA vaccine encoding HPV-16 E7 with mutation in L-Y-C-Y-E pRb-binding motif induces potent anti-tumor responses in mice. J Virol Methods 206:12–18

    Article  CAS  PubMed  Google Scholar 

  2. Bobanga ID, Petrosiute A, Huang AY (2013) Chemokines as cancer vaccine adjuvants. Vaccines 1:444–462

    CAS  PubMed  Google Scholar 

  3. Bos R, Marquardt KL, Cheung J, Sherman LA (2012) Functional differences between low-and high-affinity CD8+ T cells in the tumor environment. Oncoimmunology 1:1239–1247

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cappuccini F, Stribbling S, Pollock E, Hill AV, Redchenko I (2016) Immunogenicity and efficacy of the novel cancer vaccine based on simian adenovirus and MVA vectors alone and in combination with PD-1 mAb in a mouse model of prostate cancer. Cancer immunology, immunotherapy : CII

  5. Chen AA, Gheit T, Franceschi S, Tommasino M, Clifford GM (2015) Human Papillomavirus 18 Genetic Variation and Cervical Cancer Risk Worldwide. J Virol 89:10680–10687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Curran MA, Montalvo W, Yagita H, Allison JP (2010) PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proceed Nat Acad Sci USA 107:4275–4280

    Article  CAS  Google Scholar 

  7. Drake C (2012) Combination immunotherapy approaches. Ann Oncol 23:viii41–viii46

  8. Dubinett SM, Lee JM, Sharma S, Mule JJ (2010) Chemokines: can effector cells be redirected to the site of the tumor? Cancer journal (Sudbury, Mass) 16:325-335

  9. Duraiswamy J, Kaluza KM, Freeman GJ, Coukos G (2013) Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer Res 73:3591–3603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Friedberg JW, Kim H, McCauley M, Hessel EM, Sims P, Fisher DC, Nadler LM, Coffman RL, Freedman AS (2005) Combination immunotherapy with a CpG oligonucleotide (1018 ISS) and rituximab in patients with non-Hodgkin lymphoma: increased interferon-α/β–inducible gene expression, without significant toxicity. Blood 105:489–495

    Article  CAS  PubMed  Google Scholar 

  11. Gableh F, Saeidi M, Hemati S, Hamdi K, Soleimanjahi H, Gorji A, Ghaemi A (2016) Combination of the toll like receptor agonist and alpha-Galactosylceramide as an efficient adjuvant for cancer vaccine. J Biomed Sci 23:16

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ghaemi A, Soleimanjahi H, Bamdad T, Soudi S, Arefeian E, Hashemi SM, Ebtekar M (2007) Induction of humoral and cellular immunity against latent HSV-1 infections by DNA immunization in BALB/c mice. Comp Immunol Microbiol Infect Dis 30:197–210

    Article  PubMed  Google Scholar 

  13. Ghaemi A, Soleimanjahi H, Gill P, Hassan ZM, Razeghi S, Fazeli M, Razavinikoo SM (2011) Protection of mice by a lambda-based therapeutic vaccine against cancer associated with human papillomavirus type 16. Intervirology 54:105–112

    Article  CAS  PubMed  Google Scholar 

  14. He J, Hu Y, Hu M, Li B (2015) Development of PD-1/PD-L1 pathway in tumor immune microenvironment and treatment for non-small cell lung cancer. Sci Rep 5

  15. Hong C, Lee HJ, Kim HJ, Lee JJ (2014) The Lymphoid Chemokine CCL21 Enhances the Cytotoxic T Lymphocyte-Inducing Functions of Dendritic Cells. Scand J Immunol 79:173–180

    Article  CAS  PubMed  Google Scholar 

  16. Huang Z, Peng S, Knoff J, Lee SY, Yang B, Wu TC, Hung CF (2015) Combination of proteasome and HDAC inhibitor enhances HPV16 E7-specific CD8+ T cell immune response and antitumor effects in a preclinical cervical cancer model. J Biomed Sci 22

  17. Ji M, Liu Y, Li Q, Li X-D, Zhao W-Q, Zhang H, Zhang X, Jiang J-T, Wu C-P (2015) PD-1/PD-L1 pathway in non-small-cell lung cancer and its relation with EGFR mutation. Journal of translational medicine 13:1

    Article  Google Scholar 

  18. Jin H-T, Ahmed R, Okazaki T (2010) Role of PD-1 in regulating T-cell immunity. Negative Co-Receptors and Ligands. Springer, pp 17–37

  19. Kirk CJ, Hartigan-O’Connor D, Nickoloff BJ, Chamberlain JS, Giedlin M, Aukerman L, Mule JJ (2001) T cell-dependent antitumor immunity mediated by secondary lymphoid tissue chemokine: augmentation of dendritic cell-based immunotherapy. Cancer Res 61:2062–2070

    CAS  PubMed  Google Scholar 

  20. Kyi C, Postow MA (2014) Checkpoint blocking antibodies in cancer immunotherapy. FEBS Lett 588:368–376

    Article  CAS  PubMed  Google Scholar 

  21. Lin K, Roosinovich E, Ma B, Hung CF, Wu TC (2010) Therapeutic HPV DNA vaccines. Immunol Res 47:86–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu L, Xu X, Zhang B, Zhang R, Ji H, Wang X (2014) Combined PD-1 blockade and GITR triggering induce a potent antitumor immunity in murine cancer models and synergizes with chemotherapeutic drugs. J Trans Med 12:36

    Article  Google Scholar 

  23. Ma B, Xu Y, Hung C-F, Wu T-C (2010) HPV and therapeutic vaccines: where are we in 2010? Curr Cancer Therapy Rev 6:81–103

    Article  CAS  Google Scholar 

  24. McGray AJ, Bernard D, Hallett R, Kelly R, Jha M, Gregory C, Bassett JD, Hassell JA, Pare G, Wan Y, Bramson JL (2012) Combined vaccination and immunostimulatory antibodies provides durable cure of murine melanoma and induces transcriptional changes associated with positive outcome in human melanoma patients. Oncoimmunology 1:419–431

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mittal SK, Roche PA (2015) Suppression of antigen presentation by IL-10. Curr Opin Immunol 34:22–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mkrtichyan M, Najjar YG, Raulfs EC, Abdalla MY, Samara R, Rotem-Yehudar R, Cook L, Khleif SN (2011) Anti-PD-1 synergizes with cyclophosphamide to induce potent anti-tumor vaccine effects through novel mechanisms. Euro J Immunol 41:2977–2986

    Article  CAS  Google Scholar 

  27. Müller D (2015) Antibody fusions with immunomodulatory proteins for cancer therapy. Pharmacol Ther 154:57–66

    Article  PubMed  Google Scholar 

  28. Naderi M, Saeedi A, Moradi A, Kleshadi M, Zolfaghari MR, Gorji A, Ghaemi A (2013) Interleukin-12 as a genetic adjuvant enhances hepatitis C virus NS3 DNA vaccine immunogenicity. Virologica Sinica 28:167–173

    Article  CAS  PubMed  Google Scholar 

  29. Nagato T, Lee YR, Harabuchi Y, Celis E (2014) Combinatorial immunotherapy of polyinosinic-polycytidylic acid and blockade of programmed death-ligand 1 induce effective CD8 T-cell responses against established tumors. Clin Cancer Res Off J Am Assoc Cancer Res 20:1223–1234

    Article  CAS  Google Scholar 

  30. Nguyen-Hoai T, Baldenhofer G, Sayed Ahmed MS, Pham-Duc M, Vu MD, Lipp M, Dorken B, Pezzutto A, Westermann J (2012) CCL21 (SLC) improves tumor protection by a DNA vaccine in a Her2/neu mouse tumor model. Cancer Gene Therapy 19:69–76

    Article  CAS  PubMed  Google Scholar 

  31. Nguyen-Hoai T, Pham-Duc M, Gries M, Dörken B, Pezzutto A, Westermann J (2016) CCL4 as an adjuvant for DNA vaccination in a Her2/neu mouse tumor model. Cancer Gene Therapy

  32. Pedoeem A, Azoulay-Alfaguter I, Strazza M, Silverman GJ, Mor A (2014) Programmed death-1 pathway in cancer and autoimmunity. Clin Immunol 153:145–152

    Article  CAS  PubMed  Google Scholar 

  33. Rekoske BT, Smith HA, Olson BM, Maricque BB, McNeel DG (2015) PD-1 or PD-L1 Blockade Restores Antitumor Efficacy Following SSX2 Epitope-Modified DNA Vaccine Immunization. Cancer Immunol Res 3:946–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Riedl K, Baratelli F, Batra RK, Yang S, Luo J, Escuadro B, Figlin R, Strieter R, Sharma S, Dubinett S (2003) Overexpression of CCL-21/secondary lymphoid tissue chemokine in human dendritic cells augments chemotactic activities for lymphocytes and antigen presenting cells. Mol Cancer 2:1

    Article  Google Scholar 

  35. Roland CL, Dineen SP, Lynn KD, Sullivan LA, Dellinger MT, Sadegh L, Sullivan JP, Shames DS, Brekken RA (2009) Inhibition of vascular endothelial growth factor reduces angiogenesis and modulates immune cell infiltration of orthotopic breast cancer xenografts. Mol Cancer Ther 8:1761–1771

    Article  CAS  PubMed  Google Scholar 

  36. Rosales R, Rosales C (2014) Immune therapy for human papillomaviruses-related cancers. World J Clin Oncol 5:1002

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rozali EN, Hato SV, Robinson BW, Lake RA, Lesterhuis WJ (2012) Programmed death ligand 2 in cancer-induced immune suppression. Clin Dev Immunol 2012:656340

    Article  PubMed  PubMed Central  Google Scholar 

  38. Saade F, Petrovsky N (2012) Technologies for enhanced efficacy of DNA vaccines. Expert Rev Vaccines 11:189–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sajadian A, Tabarraei A, Soleimanjahi H, Fotouhi F, Gorji A, Ghaemi A (2014) Comparing the effect of Toll-like receptor agonist adjuvants on the efficiency of a DNA vaccine. Arch Virol 159:1951–1960

    Article  CAS  PubMed  Google Scholar 

  40. Sakuishi K, Apetoh L, Sullivan JM, Blazar BR, Kuchroo VK, Anderson AC (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207:2187–2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schmitz V, Vilanueva H, Raskopf E, Hilbert T, Barajas M, Dzienisowicz C, Gorschlüter M, Strehl J, Rabe C, Sauerbruch T (2006) Increased VEGF levels induced by anti-VEGF treatment are independent of tumor burden in colorectal carcinomas in mice. Gene Therapy 13:1198–1205

    Article  CAS  PubMed  Google Scholar 

  42. Sharma S, Stolina M, Luo J, Strieter RM, Burdick M, Zhu LX, Batra RK, Dubinett SM (2000) Secondary lymphoid tissue chemokine mediates T cell-dependent antitumor responses in vivo. J Immunol (Baltimore, Md : 1950) 164:4558–4563

  43. Sharon E, Streicher H, Goncalves P, Chen HX (2014) Immune checkpoints in cancer clinical trials. Chinese Journal of Cancer 33:434–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shi L, Chen S, Yang L, Li Y (2013) The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies. J Hematol Oncol 6:74

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tahamtan A, Ghaemi A, Gorji A, Kalhor HR, Sajadian A, Tabarraei A, Moradi A, Atyabi F, Kelishadi M (2014) Antitumor effect of therapeutic HPV DNA vaccines with chitosan-based nanodelivery systems. J Biomed Sci 21:69

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tolba KA, Bowers WJ, Muller J, Housekneckt V, Giuliano RE, Federoff HJ, Rosenblatt JD (2002) Herpes simplex virus (HSV) amplicon-mediated codelivery of secondary lymphoid tissue chemokine and CD40L results in augmented antitumor activity. Cancer Res 62:6545–6551

    CAS  PubMed  Google Scholar 

  47. Vanneman M, Dranoff G (2012) Combining immunotherapy and targeted therapies in cancer treatment. Nature Rev Cancer 12:237–251

    Article  CAS  Google Scholar 

  48. Vezys V, Penaloza-MacMaster P, Barber DL, Ha SJ, Konieczny B, Freeman GJ, Mittler RS, Ahmed R (2011) 4-1BB signaling synergizes with programmed death ligand 1 blockade to augment CD8 T cell responses during chronic viral infection. J Immunol (Baltimore, Md : 1950) 187:1634–1642

  49. Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, Lichtor T, Decker WK, Whelan RL, Kumara HS (2015) Immune evasion in cancer: Mechanistic basis and therapeutic strategies. In: Seminars in Cancer Biology. Elsevier, pp S185–S198

  50. Waldmann TA (2006) Effective cancer therapy through immunomodulation. Ann Rev Med 57:65–81

    Article  CAS  PubMed  Google Scholar 

  51. Yang MC, Yang A, Qiu J, Yang B, He L, Tsai YC, Jeang J, Wu TC, Hung CF (2016) Buccal injection of synthetic HPV long peptide vaccine induces local and systemic antigen-specific CD8+ T-cell immune responses and antitumor effects without adjuvant. Cell Biosci 6

Download references

Acknowledgments

The authors would like to acknowledge Institute Pasteur of Iran and Golestan Medical University for the financial support. This project was extracted from a MSC thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Ghaemi.

Ethics declarations

Funding

This study was supported by Institute Pasteur of Iran and Research Deputy at Golestan Medical University through Grant Project Number 157495.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The animal protocol used in this study was approved by the local animal ethics council of Golestan Ethics Committee of Golestan University of Medical Sciences (ethics number: et-157495). All experimental procedures involving mice were performed in accordance with the national experimental guidelines.

Additional information

The original version of this article was revised: “Unfortunately, the fourth author name “Mahdieh Mondanizadeh” was incorrectly published in this original version and the same is corrected here”.

An erratum to this article is available at http://dx.doi.org/10.1007/s00705-016-3160-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moeini, S., Saeidi, M., Fotouhi, F. et al. Synergistic effect of programmed cell death protein 1 blockade and secondary lymphoid tissue chemokine in the induction of anti-tumor immunity by a therapeutic cancer vaccine. Arch Virol 162, 333–346 (2017). https://doi.org/10.1007/s00705-016-3091-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-3091-5

Keywords

Navigation