Skip to main content
Log in

Identification of further diversity among posaviruses

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Recently, there have been reports of new members of posavirus-like viruses in the order Picornavirales. In this study, using a metagenomics approach, 11 posavirus-like sequences (>7,000 nucleotides) were detected in 155 porcine fecal samples. Phylogenetic analysis revealed that the newly identified virus sequences, together with other posavirus-like viruses, form distinct clusters within the order Picornavirales, composed of eight genogroups and unassigned sequences based on amino acid sequences of the helicase and RNA-dependent RNA polymerase regions, with <40 % and <50 % sequence identity, respectively. We propose further classifications of highly diverse posavirus populations based on newly identified sequences from Japanese pig feces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Le Gall O, Christian P, Fauquet CM et al (2008) Picornavirales, a proposed order of positive-sense single-stranded RNA viruses with a pseudo-T = 3 virion architecture. Arch Virol 153:715–727. doi:10.1007/s00705-008-0041-x

    Article  PubMed  Google Scholar 

  2. Sanfaçon H, Gorbalenya AE, Knowles NJ, Chen Y (2012) Picornavirales. In: Virus taxonomy: classification and nomenclature of viruses: ninth report of the International Committee on Taxonomy of Viruses. Viruses, p 835

  3. Cooper PD, Agol VI, Bachrach HL et al (1978) Picornaviridae: Second Report. Intervirology 10:165–180. doi:10.1159/000148981

    Article  Google Scholar 

  4. Bonning BC, Miller WA (2010) Dicistroviruses. Annu Rev Entomol 55:129–150. doi:10.1146/annurev-ento-112408-085457

    Article  CAS  PubMed  Google Scholar 

  5. Genersch E, Aubert M (2010) Emerging and re-emerging viruses of the honey bee (Apis mellifera L.). Vet Res. 41:54. doi:10.1051/vetres/2010027

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sanfaçon H, Wellink J, Le Gall O et al (2009) Secoviridae: a proposed family of plant viruses within the order Picornavirales that combines the families Sequiviridae and Comoviridae, the unassigned genera Cheravirus and Sadwavirus, and the proposed genus Torradovirus. Arch Virol 154:899–907. doi:10.1007/s00705-009-0367-z

    Article  PubMed  Google Scholar 

  7. Nagasaki K, Yamaguchi M (1997) Isolation of a virus infectious to the harmful bloom causing microalga Heterosigma akashiwo (Raphidophyceae). Aquat Microb Ecol 13:135–140

    Article  Google Scholar 

  8. Shan T, Li L, Simmonds P et al (2011) The fecal virome of pigs on a high-density farm. J Virol 85:11697–11708. doi:10.1128/JVI.05217-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hause BM, Hesse RA, Anderson GA (2015) Identification of a novel Picornavirales virus distantly related to posavirus in swine feces. Virus Genes 51:144–147. doi:10.1007/s11262-015-1215-8

    Article  CAS  PubMed  Google Scholar 

  10. Oude Munnink BB, Cotten M, Deijs M et al (2015) A novel genus in the order Picornavirales detected in human stool. J Gen Virol 96:3440–3443. doi:10.1099/jgv.0.000279

    Article  CAS  PubMed  Google Scholar 

  11. Reuter G, Pankovics P, Delwart E, Boros Á (2015) A novel posavirus-related single-stranded RNA virus from fish (Cyprinus carpio). Arch Virol 160:565–568. doi:10.1007/s00705-014-2304-z

    Article  CAS  PubMed  Google Scholar 

  12. Hause BM, Palinski R, Hesse R, Anderson G (2016) Highly diverse posaviruses in swine feces are aquatic in origin. J Gen Virol. doi:10.1099/jgv.0.000461

    Google Scholar 

  13. Wang J, Czech B, Crunk A et al (2011) Deep small RNA sequencing from the nematode Ascaris reveals conservation, functional diversification, and novel developmental profiles. Genome Res 21:1462–1477. doi:10.1101/gr.121426.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Reyes A, Semenkovich NP, Whiteson K et al (2012) Going viral: next-generation sequencing applied to phage populations in the human gut. Nat Rev Microbiol 10:607–617. doi:10.1038/nrmicro2853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Breitbart M, Hewson I, Felts B et al (2003) Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol 185:6220–6223. doi:10.1128/JB.185.20.6220-6223.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cotten M, Oude Munnink B, Canuti M et al (2014) Full genome virus detection in fecal samples using sensitive nucleic acid preparation, deep sequencing, and a novel iterative sequence classification algorithm. PLoS One 17(10):e0142287. doi:10.1371/journal.pone.0093269

    Google Scholar 

  17. Bodewes R, van der Giessen J, Haagmans BL et al (2013) Identification of multiple novel viruses, including a parvovirus and a hepevirus, in feces of red foxes. J Virol 87:7758–7764. doi:10.1128/JVI.00568-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Temmam S, Davoust B, Berenger JM et al (2014) Viral metagenomics on animals as a tool for the detection of zoonoses prior to human infection? Int J Mol Sci 15:10377–10397. doi:10.3390/ijms150610377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Haagmans BL, Andeweg AC, Osterhaus ADME (2009) The application of genomics to emerging zoonotic viral diseases. PLoS Pathog 5:e1000557. doi:10.1371/journal.ppat.1000557

    Article  PubMed  PubMed Central  Google Scholar 

  20. Childs JE, Gordon ER (2009) Surveillance and control of zoonotic agents prior to disease detection in humans. Mt Sinai J Med 76:421–428. doi:10.1002/msj.20133

    Article  PubMed  Google Scholar 

  21. Zhang Q, Hu R, Tang X et al (2013) Occurrence and investigation of enteric viral infections in pigs with diarrhea in China. Arch Virol 158:1631–1636. doi:10.1007/s00705-013-1659-x

    Article  CAS  PubMed  Google Scholar 

  22. Cheung AK, Ng TFF, Lager KM et al (2015) Identification of several clades of novel single-stranded circular DNA viruses with conserved stem-loop structures in pig feces. Arch Virol 160:353–358. doi:10.1007/s00705-014-2234-9

    Article  CAS  PubMed  Google Scholar 

  23. Lager KM, Ng TF, Bayles DO et al (2012) Diversity of viruses detected by deep sequencing in pigs from a common background. J Vet Diagn Invest 24:1177–1179. doi:10.1177/1040638712463212

    Article  PubMed  Google Scholar 

  24. Nagai M, Omatsu T, Aoki H et al (2015) Full genome analysis of bovine astrovirus from fecal samples of cattle in Japan: identification of possible interspecies transmission of bovine astrovirus. Arch Virol. 160:2491–2501. doi:10.1007/s00705-015-2543-7

    Article  CAS  PubMed  Google Scholar 

  25. Marchler-Bauer A, Derbyshire MK, Gonzales NR et al (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222–D226

    Article  PubMed  Google Scholar 

  26. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kano S (2001) Makiya K (2001) Relationship between the prevalence of hepatic milk spots in pig and the egg density of Ascaris suum in Kitakyushu Municipal Meat Inspection and Control Center. J UOEH 23(3):255–262

    CAS  PubMed  Google Scholar 

  28. Webster CL, Longdon B, Lewis SH, Obbard DJ (2016) Twenty-five new viruses associated with the Drosophilidae (Diptera). Evol Bioinform Online 12(Suppl 2):13–25

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministry of Health, Labour and Welfare of Japan and JSPS KAKENHI grant number 15K07718.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Nagai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

K. Sano, Y. Naoi and M. Kishimoto contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 61 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sano, K., Naoi, Y., Kishimoto, M. et al. Identification of further diversity among posaviruses. Arch Virol 161, 3541–3548 (2016). https://doi.org/10.1007/s00705-016-3048-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-3048-8

Keywords

Navigation