Skip to main content
Log in

Picornavirales, a proposed order of positive-sense single-stranded RNA viruses with a pseudo-T = 3 virion architecture

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Despite the apparent natural grouping of “picorna-like” viruses, the taxonomical significance of this putative “supergroup” was never addressed adequately. We recently proposed to the ICTV that an order should be created and named Picornavirales, to include viruses infecting eukaryotes that share similar properties: (i) a positive-sense RNA genome, usually with a 5′-bound VPg and 3′-polyadenylated, (ii) genome translation into autoproteolytically processed polyprotein(s), (iii) capsid proteins organized in a module containing three related jelly-roll domains which form small icosahedral, non-enveloped particles with a pseudo-T = 3 symmetry, and (iv) a three-domain module containing a superfamily III helicase, a (cysteine) proteinase with a chymotrypsin-like fold and an RNA-dependent RNA polymerase. According to the above criteria, the order Picornavirales includes the families Picornaviridae, Comoviridae, Dicistroviridae, Marnaviridae, Sequiviridae and the unassigned genera Cheravirus, Iflavirus and Sadwavirus. Other taxa of “picorna-like” viruses, e.g. Potyviridae, Caliciviridae, Hypoviridae, do not conform to several of the above criteria and are more remotely related: therefore they are not being proposed as members of the new order. Newly described viruses, not yet assigned to an existing taxon by ICTV, may belong to the proposed order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adams MJ, Antoniw JF, Bar-Joseph M, Brunt AA, Candresse T, Foster GD, Martelli GP, Milne RG, Zavriev SK, Fauquet CM (2004) The new plant virus family Flexiviridae and assessment of molecular criteria for species demarcation. Arch Virol 149:1045–1060

    PubMed  CAS  Google Scholar 

  2. Allaire M, Chernaia MM, Malcolm BA, James MN (1994) Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases. Nature 369:72–76

    Article  PubMed  Google Scholar 

  3. Argos P, Kamer G, Nicklin MJ, Wimmer E (1984) Similarity in gene organization and homology between proteins of animal picornaviruses and a plant comovirus suggest common ancestry of these virus families. Nucleic Acids Res 12:7251–7267

    Article  PubMed  CAS  Google Scholar 

  4. Arnold E, Luo M, Vriend G, Rossmann MG, Palmenberg AC, Parks GD, Nicklin MJ, Wimmer E (1987) Implications of the picornavirus capsid structure for polyprotein processing. Proc Natl Acad Sci USA 84:21–25

    Article  PubMed  CAS  Google Scholar 

  5. Atkins JF, Wills NM, Loughran G, Wu CY, Parsawar K, Ryan MD, Wang CH, Nelson CC (2007) A case for “StopGo”: reprogramming translation to augment codon meaning of GGN by promoting unconventional termination (Stop) after addition of glycine and then allowing continued translation (Go). RNA 13:803–810

    Article  PubMed  CAS  Google Scholar 

  6. Bazan JF, Fletterick RJ (1988) Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Proc Natl Acad Sci USA 85:7872–7876

    Article  PubMed  CAS  Google Scholar 

  7. Berger PH, Adams MJ, Barnett OW, Brunt AA, Hammond J, Hill JH, Jordan CV, Kashiwazaki S, Rybicki E, Spence N, Stenger DC, Ohki ST, Uyeda I, van Zaayen A, Valkonen JP, Vetten HJ (2005) Potyviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy, VIIIth report of the ICTV. Elsevier/Academic Press, London, pp 819–841

    Google Scholar 

  8. Bishop NE, Anderson DA (1993) RNA-dependent cleavage of VP0 capsid protein in provirions of hepatitis A virus. Virology 197:616–623

    Article  PubMed  CAS  Google Scholar 

  9. Blair WS, Semler BL (1991) Role for the P4 amino acid residue in substrate utilization by the poliovirus 3CD proteinase. J Virol 65:6111–6123

    PubMed  CAS  Google Scholar 

  10. Buck KW, Esteban R, Hillman BI (2005) Narnaviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy, VIIIth report of the ICTV. Elsevier/Academic Press, London, pp 751–756

    Google Scholar 

  11. Candresse T, Svanella-Dumas L, Le Gall O (2006) Characterization and partial genome sequence of stocky prune virus, a new member of the genus Cheravirus. Arch Virol 151:1179–1188

    Article  PubMed  CAS  Google Scholar 

  12. Carrington JC, Cary SM, Dougherty WG (1988) Mutational analysis of tobacco etch virus polyprotein processing: cis and trans proteolytic activities of polyproteins containing the 49-kilodalton proteinase. J Virol 62:2313–2320

    PubMed  CAS  Google Scholar 

  13. Chandrasekar V, Johnson JE (1998) The structure of tobacco ringspot virus: a link in the evolution of icosahedral capsids in the picornavirus superfamily. Structure 6:157–171

    Article  PubMed  CAS  Google Scholar 

  14. Cheah KC, Leong LE, Porter AG (1990) Site-directed mutagenesis suggests close functional relationship between a human rhinovirus 3C cysteine protease and cellular trypsin-like serine proteases. J Biol Chem 265:7180–7187

    PubMed  CAS  Google Scholar 

  15. Chen ZG, Stauffacher C, Li Y, Schmidt T, Bomu W, Kamer G, Shanks M, Lomonossoff G, Johnson JE (1989) Protein-RNA interactions in an icosahedral virus at 3.0 Å resolution. Science 245:154–159

    Article  PubMed  CAS  Google Scholar 

  16. Christian P, Carstens E, Domier L, Johnson J, Johnson K, Nakashima N, Scotti P, van der Wilk F (2005) Dicistroviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp 783–788

    Google Scholar 

  17. Christian P, Carstens E, Domier L, Johnson J, Johnson K, Nakashima N, Scotti P, van der Wilk F (2005) Iflavirus. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp 779–782

    Google Scholar 

  18. Culley AI, Lang AS, Suttle CA (2003) High diversity of unknown picorna-like viruses in the sea. Nature 424:1054–1057

    Article  PubMed  CAS  Google Scholar 

  19. Culley AI, Lang AS, Suttle CA (2005) Marnaviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy, VIIIth report of the ICTV. Elsevier/Academic Press, London, pp 789–792

    Google Scholar 

  20. Culley AI, Lang AS, Suttle CA (2007) The complete genomes of three viruses assembled from shotgun libraries of marine RNA virus communities. Virol J (electronic resource) 4:69

    Google Scholar 

  21. Dolja VV, Boyko VP, Agranovsky AA, Koonin EV (1991) Phylogeny of capsid proteins of rod-shaped and filamentous RNA plant viruses: two families with distinct patterns of sequence and probably structure conservation. Virology 184:79–86

    Article  PubMed  CAS  Google Scholar 

  22. Dolja VV, Carrington JC (1992) Evolution of positive-strand RNA viruses. Semin Virol 3:315–326

    CAS  Google Scholar 

  23. Dunham DM, Jiang X, Berke T, Smith AW, Matson DO (1998) Genomic mapping of a calicivirus VPg. Arch Virol 143:2421–2430

    Article  PubMed  CAS  Google Scholar 

  24. Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (2005) Virus taxonomy, VIIIth report of the ICTV. Elsevier/Academic Press, London

    Google Scholar 

  25. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  26. Fenner F, Gibbs AJ (eds) (1988) Portraits of viruses: a history of virology. Karger, Basel

  27. Franssen H, Leunissen J, Goldbach R, Lomonossoff GP, Zimmern D (1984) Homologous sequences in nonstructural proteins from cowpea mosaic virus and picornaviruses. EMBO J 3:855–861

    PubMed  CAS  Google Scholar 

  28. Goldbach R (1986) Molecular evolution of plant RNA viruses. Annu Rev Phytopathol 24:289–310

    Article  CAS  Google Scholar 

  29. Goldbach R (1987) Genome similarities between plant and animal RNA viruses. Microbiol Sci 4:197–202

    PubMed  CAS  Google Scholar 

  30. Goldbach R, Wellink J (1988) Evolution of plus-strand RNA viruses. Intervirology 29:260–267

    PubMed  CAS  Google Scholar 

  31. Gorbalenya AE, Koonin EV (1993) Comparative analysis of amino acid sequences of key enzymes of replication and expression of positive-strand RNA viruses. Validity of approach and functional and evolutionary implications. Sov Sci Rev D Physicochem Biol 11:1–84

    Google Scholar 

  32. Gorbalenya AE, Koonin EV (1993) Helicases: amino acid sequence comparisons and structure-function relationships. Curr Opin Struct Biol 3:419–429

    Article  CAS  Google Scholar 

  33. Gorbalenya AE, Blinov VM, Donchenko AP (1986) Poliovirus-encoded proteinase 3C: a possible evolutionary link between cellular serine and cysteine proteinase families. FEBS Lett 194:253–257

    Article  PubMed  CAS  Google Scholar 

  34. Gorbalenya AE, Donchenko AP, Blinov VM, Koonin EV (1989) Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases: a distinct protein superfamily with a common structural fold. FEBS Lett 243:103–114

    Article  PubMed  CAS  Google Scholar 

  35. Gorbalenya AE, Koonin EV, Wolf YI (1990) A new superfamily of putative NTP-binding domains encoded by genomes of small DNA and RNA viruses. FEBS Lett 262:145–148

    Article  PubMed  CAS  Google Scholar 

  36. Gorbalenya AE, Pringle FM, Zeddam JL, Luke BT, Cameron CE, Kalmakoff J, Hanzlik TN, Gordon KH, Ward VK (2002) The palm subdomain-based active site is internally permuted in viral RNA-dependent RNA polymerases of an ancient lineage. J Mol Biol 324:47–62

    Article  PubMed  CAS  Google Scholar 

  37. Gromeier M, Wimmer E, Gorbalenya AE (1999) Genetics, pathogenesis and evolution of picornaviruses. In: Domingo E, Webster RG, Holland JJ (eds) Academic Press, pp 287–343

  38. Habayeb MS, Ekengren SK, Hultmark D (2006) Nora virus, a persistent virus in Drosophila, defines a new picorna-like virus family. J Gen Virol 87:3045–3051

    Article  PubMed  CAS  Google Scholar 

  39. Hansen JL, Long AM, Schultz SC (1997) Structure of the RNA-dependent RNA polymerase of poliovirus. Structure 5:1109–1122

    Article  PubMed  CAS  Google Scholar 

  40. Harber JJ, Bradley J, Anderson CW, Wimmer E (1991) Catalysis of poliovirus VP0 maturation cleavage is not mediated by serine 10 of VP2. J Virol 65:326–334

    PubMed  CAS  Google Scholar 

  41. Hemmer O, Greif C, Dufourcq P, Reinbolt J, Fritsch C (1995) Functional characterization of the proteolytic activity of the tomato black ring nepovirus RNA-1-encoded polyprotein. Virology 206:362–371

    Article  PubMed  CAS  Google Scholar 

  42. Higaki JN, Evnin LB, Craik CS (1989) Introduction of a cysteine protease active site into trypsin. Biochemistry (Mosc) 28:9256–9263

    Article  CAS  Google Scholar 

  43. Hogle JM, Chow M, Filman DJ (1985) Three-dimensional structure of poliovirus at 2.9 Å resolution. Science 229:1358–1365

    Article  PubMed  CAS  Google Scholar 

  44. Ikegami M, Iwanami T, Jones AT, Karasev AV, Le Gall O, Lehto K, Sanfacon H, Wellink J, Wetzel T (2002) Taxonomy of recognized and putative species in the family Comoviridae. In: XIIth IUMS Virology meeting, Paris, France, 27th July–12th August 2002

  45. Iwanami T, Kondo Y, Karasev AV (1999) Nucleotide sequences and taxonomy of Satsuma dwarf virus. J Gen Virol 80:793–797

    PubMed  CAS  Google Scholar 

  46. Kamer G, Argos P (1984) Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Res 12:7269–7282

    Article  PubMed  CAS  Google Scholar 

  47. King AF, Sangar DV, Harris TJ, Brown F (1980) Heterogeneity of the genome-linked protein of foot-and-mouth disease virus. J Virol 34:627–634

    PubMed  CAS  Google Scholar 

  48. Koonin EV (1991) The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J Gen Virol 72:2197–2206

    PubMed  Google Scholar 

  49. Koonin EV, Dolja VV (1993) Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28:375–430

    Article  PubMed  CAS  Google Scholar 

  50. Koonin EV, Choi GH, Nuss DL, Shapira R, Carrington JC (1991) Evidence for common ancestry of a chestnut blight hypovirulence-associated double-stranded RNA and a group of positive-strand RNA plant viruses. Proc Natl Acad Sci USA 88:10647–10651

    Article  PubMed  CAS  Google Scholar 

  51. Koopmans MK, Green KY, Ando T, Clarke IN, Estes MK, Matson DO, Nakata S, Neill JD, Smith AW, Studdert MJ, Thiel HJ (2005) Caliciviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy, VIIIth report of the ICTV. Elsevier/Academic Press, London, pp 843–851

    Google Scholar 

  52. Lain S, Riechmann JL, Garcia JA (1990) RNA helicase: a novel activity associated with a protein encoded by a positive strand RNA virus. Nucleic Acids Res 18:7003–7006

    Article  PubMed  CAS  Google Scholar 

  53. Laine P, Savolainen C, Blomqvist S, Hovi T (2005) Phylogenetic analysis of human rhinovirus capsid protein VP1 and 2A protease coding sequences confirms shared genus-like relationships with human enteroviruses. J Gen Virol 86:697–706

    Article  PubMed  CAS  Google Scholar 

  54. Lang AS, Culley AI, Suttle CA (2004) Genome sequence and characterization of a virus (HaRNAV) related to picorna-like viruses that infects the marine toxic bloom-forming alga Heterosigma akashiwo. Virology 320:206–217

    Article  PubMed  CAS  Google Scholar 

  55. Lawson MA, Semler BL (1991) Poliovirus thiol proteinase 3C can utilize a serine nucleophile within the putative catalytic triad. Proc Natl Acad Sci USA 88:9919–9923

    Article  PubMed  CAS  Google Scholar 

  56. Le Gall O, Iwanami T, Jones AT, Lehto K, Sanfacon H, Wellink J, Wetzel T, Yoshikawa N (2005) Cheravirus. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp 803–805

    Google Scholar 

  57. Le Gall O, Iwanami T, Jones AT, Lehto K, Sanfacon H, Wellink J, Wetzel T, Yoshikawa N (2005) Sequiviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp 793–798

    Google Scholar 

  58. Le Gall O, Iwanami T, Jones AT, Lehto K, Sanfacon H, Wellink J, Wetzel T, Yoshikawa N (2005) Comoviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp 807–818

    Google Scholar 

  59. Le Gall O, Iwanami T, Jones AT, Lehto K, Sanfacon H, Wellink J, Wetzel T, Yoshikawa N (2005) Sadwavirus. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp 799–802

    Google Scholar 

  60. Le Gall O, Sanfaçon H, Ikegami M, Iwanami T, Jones T, Karasev A, Lehto K, Wellink J, Wetzel T, Yoshikawa N (2007) Cheravirus and Sadwavirus : two unassigned genera of plant positive-sense single-stranded RNA viruses formerly considered atypical members of the genus Nepovirus (family Comoviridae). Arch Virol 152:1767–1774

    Article  PubMed  CAS  Google Scholar 

  61. Liljas L, Tate J, Lin T, Christian P, Johnson JE (2002) Evolutionary and taxonomic implications of conserved structural motifs between picornaviruses and insect picorna-like viruses. Arch Virol 147:59–84

    Article  PubMed  CAS  Google Scholar 

  62. Margis R, Pinck L (1992) Effects of site-directed mutagenesis on the presumed catalytic triad and substrate-binding pocket of grapevine fanleaf nepovirus 24-kDa proteinase. Virology 190:884–888

    Article  PubMed  CAS  Google Scholar 

  63. Martin A, Benichou D, Chao SF, Cohen LM, Lemon SM (1999) Maturation of the hepatitis A virus capsid protein VP1 is not dependent on processing by the 3Cpro proteinase. J Virol 73:6220–6227

    PubMed  CAS  Google Scholar 

  64. Matthews DA, Smith WW, Ferre RA, Condon B, Budahazi G, Sisson W, Villafranca JE, Janson CA, McElroy HE, Gribskov CL, et al (1994) Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell 77:761–771

    Article  PubMed  CAS  Google Scholar 

  65. Mayo MA, Fritsch C (1994) A possible consensus sequence for VPg of viruses in the family Comoviridae. FEBS Lett 354:129–130

    Article  PubMed  CAS  Google Scholar 

  66. Mayo MA, Ball LA (2006) ICTV in San Francisco: a report from the Plenary Session. Arch Virol 151:413–422

    Article  PubMed  CAS  Google Scholar 

  67. Meyers G, Wirblich C, Thiel HJ (1991) Genomic and subgenomic RNAs of rabbit hemorrhagic disease virus are both protein-linked and packaged into particles. Virology 184:677–686

    Article  PubMed  CAS  Google Scholar 

  68. Mirzayan C, Wimmer E (1994) Biochemical studies on poliovirus polypeptide 2C: evidence for ATPase activity. Virology 199:176–187

    Article  PubMed  CAS  Google Scholar 

  69. Miyashita K, Utsumi R, Utsumi T, Komano T, Satoh N (1995) Mutational analysis of the putative substrate-binding site of 3C proteinase of coxsackievirus B3. Biosci Biotechnol Biochem 59:121–122

    Article  PubMed  CAS  Google Scholar 

  70. Murphy JF, Rhoads RE, Hunt AG, Shaw JG (1990) The VPg of tobacco etch virus RNA is the 49-kDa proteinase or the N-terminal 24-kDa part of the proteinase. Virology 178:285–288

    Article  PubMed  CAS  Google Scholar 

  71. Nakashima N, Shibuya N (2006) Multiple coding sequences for the genome-linked virus protein (VPg) in dicistroviruses. J Invertebr Pathol 92:100–104

    Article  PubMed  CAS  Google Scholar 

  72. Nuss DL, Hillman BI, Rigling D, Suzuki N (2005) Hypoviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp 597–601

    Google Scholar 

  73. Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    Google Scholar 

  74. Palmenberg AC, Kirby EM, Janda MR, Drake NL, Duke GM, Potratz KF, Collett MS (1984) The nucleotide and deduced amino acid sequences of the encephalomyocarditis viral polyprotein coding region. Nucl Acids Res 12:2969–2985

    Article  PubMed  CAS  Google Scholar 

  75. Pfister T, Wimmer E (2001) Polypeptide p41 of a Norwalk-Like Virus Is a Nucleic Acid-Independent Nucleoside Triphosphatase. J Virol 75:1611–1619

    Article  PubMed  CAS  Google Scholar 

  76. Prasad BV, Hardy ME, Dokland T, Bella J, Rossmann MG, Estes MK (1999) X-ray crystallographic structure of the Norwalk virus capsid. Science 286:287–290

    Article  PubMed  CAS  Google Scholar 

  77. Rossmann MG, Johnson JE (1987) Icosahedral RNA virus structure. Annu Rev Biochem 58:533–573

    Article  Google Scholar 

  78. Rossmann MG, Arnold E, Erickson JW, Frankenberger EA, Griffith JP, Hecht HJ, Johnson JE, Kamer G, Luo M, Mosser AG et al (1985) Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317:145–153

    Article  PubMed  CAS  Google Scholar 

  79. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  80. Shukla DD, Ward CW, Brunt AA (1994) The Potyviridae. CAB International, Wallingford

    Google Scholar 

  81. Spaan WJM, Cavanagh D, de Groot RJ, Enjuanes L, Gorbalenya AE, Snijder EJ, Walker PJ (2005) Nidovirales. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp 937–945

    Google Scholar 

  82. Stanway G, Brown F, Christian P, Hovi T, Hyypiä T, King AMQ, Knowles NJ, Lemon SM, Minor PD, Pallansch MA, Palmenberg AC, Skern T (2005) Picornaviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp 757–778

    Google Scholar 

  83. Takao Y, Mise K, Nagasaki K, Okuno T, Honda D (2006) Complete nucleotide sequence and genome organization of a single-stranded RNA virus infecting the marine fungoid protist Schizochytrium sp. J Gen Virol 87:723–733

    Article  PubMed  CAS  Google Scholar 

  84. Tanner NK, Linder P (2001) DExD/H box helicases: from generic motors to specific dissociation functions. Mol Cell 8:251–262

    Article  PubMed  CAS  Google Scholar 

  85. Tate J, Liljas L, Scotti P, Christian P, Lin T, Johnson JE (1999) The crystal structure of cricket paralysis virus: the first view of a new virus family. Nat Struct Biol 6:765–774

    Article  PubMed  CAS  Google Scholar 

  86. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  87. Turnbull-Ross AD, Mayo MA, Reavy B, Murant AF (1993) Sequence analysis of the parsnip yellow fleck virus polyprotein: evidence of affinities with picornaviruses. J Gen Virol 74:555–561

    Article  PubMed  CAS  Google Scholar 

  88. Tzanetakis IE, Postman JD, Gergerich RC, Martin RR (2006) A virus between families: nucleotide sequence and evolution of Strawberry latent ringspot virus. Virus Res 121:199–204

    Article  PubMed  CAS  Google Scholar 

  89. Verbeek M, Dullemans AM, van den Heuvel JF, Maris PC, van der Vlugt RA (2007) Identification and characterisation of tomato torrado virus, a new plant picorna-like virus from tomato. Arch Virol 152: 881–890

    Article  PubMed  CAS  Google Scholar 

  90. Wetzel T, Ebel R, Moury B, Le Gall O, Endisch S, Reustle GM, Krczal G (2006) Sequence analysis of grapevine isolates of Raspberry ringspot nepovirus. Arch Virol 151:599–606

    Article  PubMed  CAS  Google Scholar 

  91. Wildy P (1971) Classification and nomenclature of viruses. First report of the International Committee on Nomenclature of Viruses. Monogr Virol 5:1–65

    Google Scholar 

  92. Wilson JE, Powell MJ, Hoover SE, Sarnow P (2000) Naturally occurring dicistronic cricket paralysis virus RNA is regulated by two internal ribosome entry sites. Mol Cell Biol 20:4990–4999

    Article  PubMed  CAS  Google Scholar 

  93. Ypma-Wong MF, Filman DJ, Hogle JM, Semler BL (1988) Structural domains of the poliovirus polyprotein are major determinants for proteolytic cleavage at Gln-Gly pairs. J Biol Chem 263:17846–17856

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the members of the ICTV study groups on Picornaviridae, insect picorna-like viruses, plant picorna-like viruses, Potyviridae, Caliciviridae and Hypoviridae for their helpful discussions and comments, which we hope this proposal reflects at best. The creation of the order Picornavirales as defined in this report has recently been approved by ICTV under code number 2005.200G.02 after consultation by the entire virological community on the ICTVnet web site [66].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Le Gall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Gall, O., Christian, P., Fauquet, C.M. et al. Picornavirales, a proposed order of positive-sense single-stranded RNA viruses with a pseudo-T = 3 virion architecture. Arch Virol 153, 715–727 (2008). https://doi.org/10.1007/s00705-008-0041-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-008-0041-x

Keywords

Navigation