Skip to main content
Log in

Reproduction biology and chloroplast inheritance in Bromeliaceae: a case study in Fosterella (Pitcairnioideae)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

We applied a series of intra- and interspecific in situ cross-pollination experiments under greenhouse conditions to evaluate the breeding systems in four Fosterella species (Pitcairnioideae s.str.; Bromeliaceae). Viable hybrids were produced between each pair of the investigated species, suggesting that reproduction barriers may be low also under natural conditions. Seed germination rates proved to be high in each crossing treatment, indicating a high viability of the artificial hybrids. Large numbers of seeds were produced after both closed and open pollination treatments, suggesting that autogamy may be a major reproductive strategy in the genus. Our results support the concept that self-compatibility is an appropriate way to avoid natural hybridization in Bromeliaceae and could assist in maintaining species integrity in the presence of pollen flow. Paternity was verified in all crosses by genotyping parents and offspring with a set of polymorphic nuclear microsatellite markers. To study the mode of chloroplast inheritance, we developed a novel set of 24 chloroplast microsatellite markers using 454 pyrosequencing technology, and applied four of these markers for genotyping parents and offspring from all crosses. Our results clearly demonstrated a maternal inheritance of plastids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott R, Albach D, Ansell S, Arntzen JW, Baird SJE, Bierne N, Boughman J, Brelsford A, Buerkle CA, Buggs R, Butlin RK, Dieckmann U, Eroukhmanoff F, Grill A, Cahan SH, Hermansen JS, Hewitt G, Hudson AG, Jiggins C, Jones J, Keller B, Marczewski T, Mallet J, Martinez-Rodriguez P, Möst M, Mullen S, Nichols R, Nolte AW, Parisod C, Pfennig K, Rice AM, Ritchie MG, Seifert B, Smadja CM, Stelkens R, Szymura JM, Väinölä R, Wolf JBW, Zinner D (2013) Hybridization and speciation. J Evol Biol 26:229–246. doi:10.1111/j.1420-9101.2012.02599.x

    Article  CAS  PubMed  Google Scholar 

  • Affre L, Thompson JD, Debussche M (1995) The reproductive biology of the Mediterranean endemic Cyclamen balearicum Wilk. (Primulaceae). Bot J Linn Soc 118:309–330. doi:10.1111/j.1095-8339.1995.tb00474.x

    Google Scholar 

  • Arnold ML (1992) Natural hybridization as an evolutionary process. Annual Rev Ecol Syst 23:237–261. doi:10.1146/annurev.es.23.110192.001321

    Article  Google Scholar 

  • Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, New York

    Google Scholar 

  • Arroyo-García R, Lefort F, De Andrés MT, Ibáñez J, Borrego J, Jouve N, Cabello F, Martínez-Zapater JM (2002) Chloroplast microsatellite polymorphism in Vitis species. Genome 45:1142–1149. doi:10.1139/g02-087

    Article  PubMed  Google Scholar 

  • Barbará T, Lexer C, Martinelli G, Mayo S, Fay MF, Heuertz M (2008) Within-population spatial genetic structure in four naturally fragmented species of a neotropical inselberg radiation, Alcantarea imperialis, A. geniculata, A. glaziouana and A. regina (Bromeliaceae). Heredity 101:285–296. doi:10.1038/hdy.2008.65

    Article  PubMed  Google Scholar 

  • Benzing DH (2000) Bromeliaceae: profile of an adaptive radiation. Cambridge University Press, New York

    Book  Google Scholar 

  • Cato SA, Richardson TE (1996) Inter- and intraspecific polymorphism at chloroplast SSR loci and the inheritance of plastids in Pinus radiata D.Don. Theor Appl Genet 93:587–592. doi:10.1007/BF00417952

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth D, Bartolomé C, Schierup MH, Mable BK (2003) Haplotype structure of the stigmatic self-incompatibility gene in natural populations of Arabidopsis lyrata. Molec Biol Evol 20:1741–1753. doi:10.1093/molbev/msg170

    Article  CAS  PubMed  Google Scholar 

  • Cheng YJ, Guo WW, Deng XX (2003) cpSSR: a new tool to analyze chloroplast genome of citrus somatic hybrids. Acta Bot Sin 45:906–909

    CAS  Google Scholar 

  • Christianini AV, Forzza RC, Buzato S (2013) Divergence on floral traits and vertebrate pollinators of two endemic Encholirium bromeliads. Pl Biol 15:360–368. doi:10.1111/j.1438-8677.2012.00649.x

    Article  CAS  Google Scholar 

  • Collevatti RG, Grattapaglia D, Hay JD (2003) Evidences for multiple maternal lineages of Caryocar brasiliense populations in the Brazilian Cerrado based on the analysis of chloroplast DNA sequences and microsatellite haplotype variation. Molec Ecol 12:105–115. doi:10.1046/j.1365-294X.2003.01701.x

    Article  CAS  Google Scholar 

  • Corriveau JL, Coleman AW (1988) Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Amer J Bot 75:1443–1458

    Article  Google Scholar 

  • De Sousa LOF, Wendt T, Brown GK, Tuthill DE, Evans TM (2007) Monophyly and phylogenetic relationships in Lymania (Bromeliaceae: Bromelioideae) based on morphology and chloroplast DNA sequences. Syst Bot 32:264–270. doi:10.1600/036364407781179707

    Article  Google Scholar 

  • Dellaporta SL, Calderon-Urrea A (1993) Sex determination in flowering plants. Pl Cell 5:1241–1251. doi:10.1105/tpc.5.10.1241

    Article  CAS  Google Scholar 

  • Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2010) Geneious v5.1.6, available from http://www.geneious.com

  • Ebert D, Peakall R (2009) Chloroplast simple sequence repeats (cpSSRs): technical resources and recommendations for expanding cpSSR discovery and applications to a wide array of plant species. Molec Ecol Res 9:673–690. doi:10.1111/j.1755-0998.2008.02319.x

    Article  CAS  Google Scholar 

  • Erhardt A, Jäggi B (1995) From pollination by Lepidoptera to selfing; the case of Dianthus glacialis (Caryophyllaceae). Pl Syst Evol 195:67–76. doi:10.1007/BF00982316

    Article  Google Scholar 

  • Frankel R, Galun E (1977) Pollination mechanisms, reproduction and plant breeding. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Gardner CS (1984) Natural hybridization in Tillandsia subgenus Tillandsia. Selbyana 7:380–393

    Google Scholar 

  • Givnish TJ, Sytsma KJ, Smith JF, Hahn WJ, Benzing DH, Burkhardt EM (1997) Molecular evolution and adaptive radiation in Brocchinia (Bromeliaceae: Pitcairnioideae) atop tepuis of the Guayana Shield. In: Givnish TJ, Sytsma KJ (eds) Molecular evolution and adaptive radiation. Cambridge University Press, New York, pp 259–311

    Google Scholar 

  • Givnish TJ, Millam KC, Berry PE, Sytsma KJ (2007) Phylogeny, adaptive radiation, and historical biogeography of Bromeliaceae inferred from ndhF sequence data. Aliso 23:3–26

    Article  Google Scholar 

  • Givnish TJ, Barfuss MHJ, Van Ee B, Riina R, Schulte K, Horres R, Gonsiska PA, Jabaily RS, Crayn DM, Smith JAC, Winter K, Brown GK, Evans TM, Holst BK, Luther H, Till W, Zizka G, Berry PE, Sytsma KJ (2011) Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: insights from an eight-locus plastid phylogeny. Amer J Bot 98:872–895. doi:10.3732/ajb.1000059

    Article  Google Scholar 

  • Grant V (1981) Plant speciation. Columbia University Press, New York

    Google Scholar 

  • Guisinger MM, Chumley TW, Kuehl JV, Boore JL, Jansen RK (2010) Implications of the plastid genome sequence of Typha (Typhaceae, Poales) for understanding genome evolution in Poaceae. J Molec Evol 70:149–166. doi:10.1007/s00239-009-9317-3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hagemann R (2004) The sexual inheritance of plant organelles. In: Daniell H, Chase CD (eds) Molecular biology and biotechnology of plant organelles. Springer-Verlag, pp 93–113

  • Igic B, Busch JW (2013) Is self-fertilization an evolutionary dead end? New Phytol 198:386–397. doi:10.1111/nph.12182

    Article  PubMed  Google Scholar 

  • Jabaily RS, Sytsma KJ (2010) Phylogenetics of Puya (Bromeliaceae): placement, major lineages, and evolution of Chilean species. Amer J Bot 97:337–356. doi:10.3732/ajb.0900107

    Article  CAS  Google Scholar 

  • Klips RA, Snow AA (1997) Delayed autonomous self-pollination in Hibiscus laevis (Malvaceae). Amer J Bot 84:48–53

    Article  Google Scholar 

  • Kofler R, Schlötterer C, Lelley T (2007) SciRoKo: a new tool for whole genome microsatellite search and investigation. Bioinformatics 23: 1683–1685. Available from http://www.kofler.or.at/ bioinformatics/SciRoKo/index.html

  • Krapp F (2013) Phylogenie und Evolution der Gattung Dyckia (Bromeliaceae). PhD Thesis, University of Kassel, Kassel

  • Krapp F, Wöhrmann T, Pinangé DSB, Benko-Iseppon AM, Huettel B, Weising K (2012) A set of plastid microsatellite loci for the genus Dyckia (Bromeliaceae) derived from 454-pyrosequencing. Amer J Bot 99:e470–e473. doi:10.3732/ajb.1200153

    Article  Google Scholar 

  • Lee RM, Thimmapuram J, Thinglum KA, Gong G, Hernandez AG, Wright CL, Kim RW, Mikel MA, Tranel PJ (2009) Sampling the waterhemp (Amaranthus tuberculatus) genome using pyrosequencing technology. Weed Sci 57:463–469. doi:10.1614/WS-09-021.1

    Article  CAS  Google Scholar 

  • Luther HE (1984) A hybrid Pitcairnia from Western Ecuador. J Bromeliad Soc 34:272–274

    Google Scholar 

  • Luther HE (2012) An alphabetical list of bromeliad binomials. Marie Selby Botanical Gardens and The Bromeliad Society International, 13 edn

  • Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–423. doi:10.1126/science.264.5157.421

    Article  CAS  PubMed  Google Scholar 

  • Matallana G, Godinho MAS, Guilherme FAG, Belisario M, Coser TS, Wendt T (2010) Breeding systems of Bromeliaceae species: evolution of selfing in the context of sympatric occurrence. Pl Syst Evol 289:57–65. doi:10.1007/s00606-010-0332-z

    Article  Google Scholar 

  • Mogensen HL (1996) The hows and whys of cytoplasmatic inheritance in seed plants. Amer J Bot 83:383–404

    Article  Google Scholar 

  • Morand-Prieur ME, Vedel F, Raquin C, Brachet S, Sihachakr D, Frascaria-Lacoste N (2002) Maternal inheritance of a chloroplast microsatellite marker in controlled hybrids between Fraxinus excelsior and Fraxinus angustifolia. Molec Ecol 11:613–617. doi:10.1046/j.1365-294X.2002.01453.x

    Article  CAS  Google Scholar 

  • Olivencia AO, Claver JPC, Alcaraz JAD (1995) Floral and reproductive biology of Drosophyllum lusitanicum (L.) Link (Droseraceae). Bot J Linn Soc 118:331–351. doi:10.1111/j.1095-8339.1995.tb00475.x

    Google Scholar 

  • Ornduff R (1969) Reproductive biology in relation to systematics. Taxon 18:121–244

    Article  Google Scholar 

  • Palma-Silva C, Lexer C, Paggi GM, Barbará T, Bered F, Bodanese-Zanettini MH (2009) Range-wide patterns of nuclear and chloroplast DNA diversity in Vriesea gigantea (Bromeliaceae), a neotropical forest species. Heredity 103:503–512. doi:10.1038/hdy.2009.116

    Article  CAS  PubMed  Google Scholar 

  • Palma-Silva C, Wendt T, Pinheiro F, Barbará T, Fay MF, Cozzolino S, Lexer C (2011) Sympatric bromeliad species (Pitcairnia spp.) facilitate tests of mechanisms involved in species cohesion and reproductive isolation in Neotropical inselbergs. Molec Ecol 20:3185–3201. doi:10.1111/j.1365-294X.2011.05143.x

    Article  CAS  Google Scholar 

  • Peters J (2009) Revision of the genus Fosterella (Bromeliaceae). PhD Thesis, University of Kassel, Kassel

  • Peters J, Vásquez R, Osinaga A, Leme EMC, Weising K, Ibisch PL (2008) Towards a taxonomic revision of the genus Fosterella (Bromeliaceae). Selbyana 29:182–194

    Google Scholar 

  • Reboud X, Zeyl C (1994) Organelle inheritance in plants. Heredity 72:132–140. doi:10.1038/hdy.1994.19

    Article  Google Scholar 

  • Rex M, Schulte K, Zizka G, Peters J, Vásquez R, Ibisch PL, Weising K (2009) Phylogenetic analysis of Fosterella L.B.Sm. (Pitcairnioideae, Bromeliaceae) based on four chloroplast DNA regions. Molec Phylogen Evol 51:472–485. doi:10.1016/j.ympev.2009.01.001

    Article  CAS  Google Scholar 

  • Rôças G, Klein DE, De Mattos EA (2004) Artificial hybridization between Pitcairnia flammea and Pitcairnia corcovadensis (Bromeliaceae): analysis of the performance of parents and hybrids. Pl Spec Biol 19:47–53. doi:10.1111/j.1442-1984.2004.00101.x

    Article  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: Methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Schulte K, Silvestro D, Kiehlmann E, Vesely S, Novoa P, Zizka G (2010) Detection of recent hybridization between sympatric Chilean Puya species (Bromeliaceae) using AFLP markers and reconstruction of complex relationships. Molec Phylogen Evol 57:1105–1119. doi:10.1016/j.ympev.2010.09.001

    Article  CAS  Google Scholar 

  • Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352. doi:10.1016/S0169-5347(99)01638-9

    Article  PubMed  Google Scholar 

  • Stebbins GL (1957) Self-fertilization and population variability in the higher plants. Amer Naturalist 91:337–354

    Article  Google Scholar 

  • Tel-Zur N, Abbo S, Myslabodski D, Mizrahi Y (1999) Modified CTAB procedure for DNA isolation from epiphytic cacti of the genera Hylocereus and Selenicereus (Cactaceae). Pl Molec Biol Rep 17:249–254. doi:10.1023/A:1007656315275

    Article  CAS  Google Scholar 

  • Vervaeke I, Parton E, Maene L, Deroose R, De Proft MP (2001) Prefertilization barriers between different Bromeliaceae. Euphytica 118:91–97. doi:10.1023/A:1004016709231

    Article  Google Scholar 

  • Vervaeke I, Wouters J, Londers E, Deroose R, De Proft MP (2004) Morphology of artificial hybrids of Vriesea splendens × Tillandsia cyanea and V. splendens x Guzmania lingulata (Bromeliaceae). Ann Bot Fenn 41:201–208

    Google Scholar 

  • Wagner N (2013) Phylogeographie und Populationsgenetik der Arten der Gattung Fosterella (Bromeliaceae) in den südamerikanischen Anden. PhD Thesis, University of Kassel, Kassel

  • Wagner N, Silvestro D, Brie D, Ibisch PL, Zizka G, Weising K, Schulte K (2013) Spatio-temporal evolution of Fosterella (Bromeliaceae) in the Central Andean biodiversity hotspot. J Biogeogr 40:869–880. doi:10.1111/jbi.12052

    Article  Google Scholar 

  • Weising K, Gardner RC (1999) A set of conserved PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–19. doi:10.1139/g98-104

    Article  CAS  PubMed  Google Scholar 

  • Wendt T, Canela MBF, Faria APG, Rios RI (2001) Reproductive biology and natural hybridization between two endemic species of Pitcairnia (Bromeliaceae). Amer J Bot 88:1760–1767

    Article  CAS  Google Scholar 

  • Wendt T, Canela MBF, Klein DE, Rios RI (2002) Selfing facilitates reproductive isolation among three sympatric species of Pitcairnia (Bromeliaceae). Pl Syst Evol 232:201–212. doi:10.1007/s006060200043

    Article  Google Scholar 

  • Wendt T, Coser TS, Matallana G, Guilherme FAG (2008) An apparent lack of prezygotic reproductive isolation among 42 sympatric species of Bromeliaceae in southeastern Brazil. Pl Syst Evol 275:31–41. doi:10.1007/s00606-008-0054-7

    Article  Google Scholar 

  • Whatley JM (1982) Ultrastructure of plastid inheritance: green algae to angiosperms. Biol Rev 57:527–569. doi:10.1111/j.1469-185X.1982.tb00373.x

    Article  Google Scholar 

  • Wills DM, Hester ML, Liu A, Burke JM (2005) Chloroplast SSR polymorphisms in the Compositae and the mode of organellar inheritance in Helianthus annuus. Theor Appl Genet 110:941–947. doi:10.1007/s00122-004-1914-3

    Article  CAS  PubMed  Google Scholar 

  • Wöhrmann T (2014) Etablierung von Mikrosatellitenmarkern für die Pitcairnioideae (Bromeliaceae) und ihre Anwendung für populationsgenetische Fragestellungen. PhD Thesis, University of Kassel, Kassel

  • Wöhrmann T, Weising K (2011) In silico mining for simple sequence repeat loci in a pineapple expressed sequence tag database and cross-species amplification of EST-SSR markers across Bromeliaceae. Theor Appl Genet 123:635–647. doi:10.1007/s00122-011-1613-9

    Article  PubMed  Google Scholar 

  • Wöhrmann T, Wagner N, Krapp F, Huettel B, Weising K (2012) Development of microsatellite markers in Fosterella rusbyi (Bromeliaceae) using 454 pyrosequencing. Amer J Bot 99:e160–e163. doi:10.3732/ajb.1100470

    Article  Google Scholar 

  • Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, McCrown B, Harbut R, Simon P (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Amer J Bot 99:1–16. doi:10.3732/ajb.1100394

    Article  Google Scholar 

  • Zanella CM, Bruxel M, Paggi GM, Goetze M, Buttow MV, Cidade FW, Bered F (2011) Genetic structure and phenotypic variation in wild populations of the medicinal tetraploid species Bromelia antiacantha (Bromeliaceae). Amer J Bot 98:1511–1519. doi:10.3732/ajb.1000458

    Article  CAS  Google Scholar 

  • Zhang Q, Liu Y, Sodmergen (2003) Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species. Pl Cell Physiol 44:941–951. doi:10.1093/pcp/pcg121

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Special thanks are due to the gardener team of the University of Kassel for their professional cultivation of Fosterella plants and their help during the crossing experiments and the growing of seedlings. The plant material used in the present study was kindly provided by the Botanical Gardens of Berlin, Frankfurt, Hannover, Heidelberg, Kiel (all Germany), Dr. Nicole Schütz (Stuttgart State Museum of Natural History, Germany), Dr. Jule Peters (University of Kassel), Dr. Ivón Ramírez-Morillo (Centro de Investigación Científica de Yucatán, Mexico) and Christoph Nowicki (University of Applied Sciences, Eberswalde). We thank Dr. Bruno Huettel from the Max-Planck Genome Centre Cologne for supplying the primary 454 sequence data of Fosterella rusbyi. We appreciated the valuable comments given by two anonymous reviewers on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natascha D. Wagner.

Additional information

Handling editor: Christoph Oberprieler.

N. D. Wagner and T. Wöhrmann contributed equally to this work and are considered as joint first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, N.D., Wöhrmann, T., Öder, V. et al. Reproduction biology and chloroplast inheritance in Bromeliaceae: a case study in Fosterella (Pitcairnioideae). Plant Syst Evol 301, 2231–2246 (2015). https://doi.org/10.1007/s00606-015-1226-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-015-1226-x

Keywords

Navigation