Skip to main content
Log in

Flower structure and development in Tupidanthus calyptratus (Araliaceae): an extreme case of polymery among asterids

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Flowers of Tupidanthus show an extreme case of floral polymery among asterids. Floral development and gynoecium structure have been examined. The floral meristem has a complex folded shape. The tiny calyx is initiated as a continuous ring primordium. The corolla is initiated as a lobed ring and develops into a calyptra. All stamen primordia appear simultaneously as a single whorl. The carpels, also in a single whorl, tend to alternate with the stamens. Some Schefflera species related to Tupidanthus are also studied. The flower of Tupidanthus is interpreted as a result of fasciation. Further investigation should determine whether mutation(s) in gene(s) of the CLAVATA family are responsible for the fasciation here. The significance of Tupidanthus for understanding spatial pattern formation in flowers of Araliaceae, and both functional and developmental constraints in angiosperm flowers with a single polymerous carpel whorl are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrose B. A., Espinosa-Matias S., Vázquez-Santana S., Vergara-Silva F., Martínez E., Márquez-Guzmán J. and Alvarez-Buylla E. R. (2006). Comparative floral developmental series of the Mexican triurids support a euanthial interpretation for the unusual floral structures of Lacandonia schismatica (Lacandoniaceae). Amer. J. Bot. 93: 15–35

    Article  Google Scholar 

  • Armbruster W. S., Debevec E. M. and Willson M. F. (2002). Evolution of syncarpy in angiosperms: theoretical and phylogenetic analyses of the effects of carpel fusion on offspring quantity and quality. J. Evol. Biol. 15: 657–672

    Article  Google Scholar 

  • Barabé D. and Lacroix C. (1999). Homeosis, morphogenetic gradient and the determination of floral identity in the inflorescences of Philodendron solimoesense (Araceae). Pl. Syst. Evol. 219: 243–261

    Article  Google Scholar 

  • Barabé D. and Lacroix C. (2001). Aspects of floral development in Philodendron grandifolium and Philodendron megalophyllum (Araceae). Int. J. Pl. Sci. 162: 47–57

    Article  Google Scholar 

  • Barabé D., Lacroix C. and Jeune B. (2000). Development of the inflorescence and flower of Philodendron fragrantissimum (Araceae): a qualitative and quantitative study. Canad. J. Bot. 78: 557–576

    Article  Google Scholar 

  • Bernhard A. (1999). Flower structure, development and systematics in Passifloraceae and in Abatia (Flacourtiaceae). Int. J. Pl. Sci. 160: 135–150

    Article  Google Scholar 

  • Bernhard A. and Endress P. K. (1999). Androecial development and systematics in Flacourtiaceae s.l. Pl. Syst. Evol. 215: 141–155

    Article  Google Scholar 

  • Bateman R. M. and DiMichele W. A. (1994). Saltational evolution of form in vascular plants: a neoGoldschmidtian synthesis. In: Ingram, D. S. and Hudson, A. (eds) Shape and form in plants and fungi, pp 63–102. Academic Press, London

    Google Scholar 

  • Bateman R. M., Hilton J. and Rudall P. J. (2006). Morphological and molecular phylogenetic context of the angiosperms: contrasting the `top-down' and `bottom-up' approaches used to infer the likely characteristics of the first flowers. J. Exp. Bot. 57: 3471–3503

    Article  PubMed  CAS  Google Scholar 

  • Bateman R. M. and Rudall P. J. (2006). The Good, the Bad and the Ugly: using spontaneous terata to distinguish the possible from the impossible in orchid floral evolution. Aliso 22: 481–496

    Google Scholar 

  • Baumann-Bodenheim M. G. (1955). Ableitung und Bau bicarpellat-monospermer und pseudomonocarpellater Araliaceen- und Umbelliferen-Früchte. Ber. Schweiz. Bot. Ges. 65: 481–510

    Google Scholar 

  • Bentham G. and Hooker J. D. (1867). Genera plantarum, vol. 1. Reeve & Co., London

    Google Scholar 

  • Calestani V. (1905). Contributo alla sistematica delle Ombellifere d'Europa. Webbia 1: 89–280

    Google Scholar 

  • Choob V. V. and Penin A. A. (2004). Structure of flower in Arabidopsis thaliana: spatial pattern formation. Russ. J. Dev. Biol. 35: 224–228

    Article  Google Scholar 

  • Choob V. V. and Yurtseva O. V. (2007). Mathematical modeling of flower structure in the family Polygonaceae. Bot. Zhurn. 92: 114–134

    Article  Google Scholar 

  • Clark S. E., Running M. P. and Meyerowitz E. M. (1993). CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119: 397–418

    PubMed  CAS  Google Scholar 

  • Clark S. E., Running M. P., Meyerowitz E. M. (1995) CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 121: 2057–2067.

    Google Scholar 

  • Claßen-Bockhoff R. (1990). Pattern analysis in pseudanthia. Pl. Syst. Evol. 171: 57–88

    Article  Google Scholar 

  • Costello A. and Motley T. J. (2004). The development of the superior ovary in Tetraplasandra (Araliaceae). Amer. J. Bot. 91: 644–655

    Article  Google Scholar 

  • Cronquist A. (1968). The evolution and classification of flowering plants. Houghton Mifflin, New York

    Google Scholar 

  • Dahlgren R. M., Clifford H. T. and Yeo P. F. (1985). The families of the monocotyledons. Springer, Berlin

    Google Scholar 

  • Endress P.K. (1982). Syncarpy and alternative modes of escaping disadvantages of apocarpy in primitive angiosperms. Taxon 31: 48–52

    Article  Google Scholar 

  • Endress P. K. (1987). Floral phyllotaxis and floral evolution. Bot. Jahrb. Syst. 108: 417–438

    Google Scholar 

  • Endress P. K. (1990). Patterns of floral construction in ontogeny and phylogeny. Biol. J. Linn. Soc. 39: 153–175

    Article  Google Scholar 

  • Endress P. K. (1997). Evolutionary biology of flowers: prospects for the next century. In: Iwatsuki, K. and Raven, P. H. (eds) Evolution and diversification of land plants, pp 99–109. Springer, Tokyo

    Google Scholar 

  • Endress P. K. (2002). Morphology and angiosperm systematics in the molecular era. Bot. Rev. 68: 545–570

    Article  Google Scholar 

  • Endress P. K. (2006). Angiosperm floral evolution: morphological developmental framework. Adv. Bot. Res. 44: 1–61

    Article  Google Scholar 

  • Erbar C. and Leins P. (1988). Blütenentwicklungsgeschichtliche Studien an Aralia und Hedera (Araliaceae). Flora 180: 391–406

    Google Scholar 

  • Erbar C. and Leins P. (1995). An analysis of the early floral development in Pittosporum tobira (Thunb.) Aiton and some remarks on the systematic position of the family Pittosporaceae. Feddes Repert. 106: 463–473

    Google Scholar 

  • Erbar C. and Leins P. (2004). Sympetaly in Apiales (Apiaceae, Araliaceae, Pittosporaceae). South Afr. J. Bot. 70: 458–467

    Google Scholar 

  • Eyde R. H. and Tseng C. C. (1971). What is the primitive floral structure of Araliaceae. J. Arnold Arbor. 52: 205–239

    Google Scholar 

  • Fletcher J. C., Brand U., Running M. P., Simon R. and Meyerowitz E. M. (1999). Signalling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283: 1911–1914

    Article  PubMed  CAS  Google Scholar 

  • Frodin D. G. and Govaerts R. (2004). World checklist and bibliography of Araliaceae. Royal Botanic Gardens, Kew

    Google Scholar 

  • Goebel K. (1931). Blütenbildung und Sprossgestaltung (Anthokladien und Inflorescenzen). Fischer, Jena

    Google Scholar 

  • Grushvitzky I. V. and Skvortsova N. T. (1973). Scheffleropsis Ridl. – the new genus for the North Vietnam flora and a representative of the oldest tribe of Araliaceae. Bot. Zhurn. 58: 1492–1503

    Google Scholar 

  • Grushvitzky I. V., Skvortsova N. T., Ha Thi Zung and Arnautov N. N. (1985). Conspectus of the family Araliaceae Juss. of the flora of Vietnam. Novit. Syst. Pl. Vasc. (Leningrad) 22: 153–191

    Google Scholar 

  • Harms H. (1894–1897) Araliaceae. In: Engler A., Prantl K. (eds.) Die natürlichen Pflanzenfamilien, Teil 3, Abt. 8. Wilhelm Engelmann, Leipzig, pp. 1–62.

  • Hoo G. and Tseng C.-J. (1965). Contributions to the Araliaceae of China. Acta Phytotax. Sinica 12, Add. 1: 129–175

    Google Scholar 

  • Hutchinson J. (1967). The genera of flowering plants, Vol. 2. Clarendon Press, Oxford

    Google Scholar 

  • Jönsson H., Heisler M. G., Shapiro B. E., Meyerowitz E. M. and Mjolsness E. (2006). An auxin-driven polarized transport model for phyllotaxis. Proc. Natl. Acad. Sci. (USA) 103: 1633–1638

    Article  Google Scholar 

  • Kayes J. M. and Clark S. E. (1998). CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development 125: 3843–3851

    PubMed  CAS  Google Scholar 

  • Leins P. and Erbar C. (1985). Zur frühen Entwicklungsgeschichte des Apiaceen-Gynoeceums. Ein Beitrag zur Entmythologisierung des unterständigen Fruchtknotens. Bot. Jahrb. Syst. 106: 53–60

    Google Scholar 

  • Leins P. and Erbar C. (1997). Floral developmental studies: some old and new questions. Int. J. Pl. Sci. 158(Suppl.): S3–S12

    Article  Google Scholar 

  • Lenhard M. and Laux T. (2003). Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1. Development 130: 3163–3173

    Article  PubMed  CAS  Google Scholar 

  • Li H. L. (1942). The Araliaceae of China. Sargentia 2: 1–134

    Google Scholar 

  • Lowry P. P., II (1990) Araliaceae – Ginseng Family. In: Wagner W. L. et al. (eds.) Manual of the flowering plants of Hawaii. University of Hawaii Press, Bishop Museum Press, Honolulu, pp. 224–237.

  • Miller J. S., Frodin D. G. and Lowry P. P. (1989). New combinations and name changes for some cultivated tropical Old World and Pacific Araliaceae. Baileya 23: 5–13

    Google Scholar 

  • Plunkett G. M., Wen J. and Lowry P. P. (2004). Generic relationships in Araliaceae: looking into the crystal ball. South Afr. J. Bot. 70: 382–392

    Google Scholar 

  • Magin N. (1977). Das Gynoecium der Apiaceae – Modell und Ontogenie. Ber. Deutsch. Bot. Ges. 90: 53–66

    Google Scholar 

  • Márquez-Guzmán J., Vázquez-Santana S., Engleman E. M., Martínez Mena A. and Martínez E. (1993). Pollen development and fertilization in Lacandonia schismatica (Lacandoniaceae). Ann. Missouri Bot. Gard. 80: 891–897

    Article  Google Scholar 

  • Mayo S. J. (1989). Observations of gynoecial structure in Philodendron (Araceae). Bot. J. Linn. Soc. 100: 139–172

    Article  Google Scholar 

  • Meyen S. V. (1984). Basic features of gymnosperm systematics and phylogeny as evidenced by the fossil record. Bot. Rev. 50: 1–111

    Article  Google Scholar 

  • Narayana L. L. and Radhakrishnaiah M. (1982). Floral anatomy of Pittosporaceae: five species of Pittosporum. Canad. J. Bot. 60: 1859–1867

    Google Scholar 

  • Nozeran R. (1955). Contribution à l'étude de quelques structures florales. (Essai de morphologie florale comparée.). Ann. Sci. Nat., Bot., Sér. 11. 16: 1–224

    Google Scholar 

  • Oskolski A. A. (1994). Wood anatomy in Araliaceae. V.L. Komarov Botanical Institute, St. Petersburg

    Google Scholar 

  • Oskolski A. A. (1995). Wood anatomy of Schefflera and related taxa (Araliaceae). IAWA J. 16: 191–215

    Google Scholar 

  • Oskolski A. A. (1996) A survey of wood anatomy of the Araliaceae. In: Donaldson L. A. et al. (eds.). Recent advances in wood anatomy. New Zealand Forest Research Institute, Rotorua, pp. 99–119.

  • Penin A., Choob V. and Ezhova T. (2004). Basic principles of terminal flower formation. Russ. J. Dev. Biol. 36: 65–69

    Article  Google Scholar 

  • Philipson W. R. (1970a). Constant and variable features of the Araliaceae. Bot. J. Linn. Soc. 63: 87–100

    Google Scholar 

  • Philipson W. R. (1970b). A redefinition of Gastonia and related genera (Araliaceae). Blumea 18: 497–505

    Google Scholar 

  • Philipson W. R. (1979). Araliaceae. In: van Steenis C. G. G. J. (eds) Flora Malesiana, Vol. 9, pp 1–105. Martinus Nijhoff, The Hague

    Google Scholar 

  • Plunkett G. M., Frodin D. G., Wen J. and Lowry P. P. (2005). Phylogeny and geography of Schefflera: pervasive polyphyly in the largest genus of Araliaceae. Ann. Missouri Bot. Gard. 92: 202–224

    Google Scholar 

  • Plunkett G. M., Wen J. and Lowry P. P. (2004). Infrafamilial classifications and characters in Araliaceae: Insights from the phylogenetic analysis of nuclear (ITS) and plastid (trnL-trnF) sequence data. Pl. Syst. Evol. 245: 1–39

    Article  CAS  Google Scholar 

  • Pluys T. (2002) Bloemontogenetische studie van de Rosaceae, Dipsacaceae en Malvaceae met bijzondere aandacht voor de bijkelk. Dissert. Katholieke Universiteit Leuven.

  • Remizowa M. V., Rudall P. J. and Sokoloff D. D. (2005). Evolutionary transitions among flowers of perianthless Piperales: inferences from inflorescence and flower development in the anomalous species Peperomia fraseri (Piperaceae). Int. J. Pl. Sci. 166: 925–943

    Article  Google Scholar 

  • Remizowa M. V., Sokoloff D. D. and Rudall P. J. (2006a). Evolution of the monocot gynoecium: evidence from comparative morphology and development in Tofieldia, Japonolirion, Petrosavia and Narthecium. Pl. Syst. Evol. 258: 183–209

    Article  Google Scholar 

  • Remizowa M. V., Sokoloff D. D. and Rudall P. J. (2006b). Patterns of floral structure and orientation in Japonolirion, Narthecium, and Tofieldia. Aliso 22: 159–171

    Google Scholar 

  • Reyneke W. F. (1981) `n Morfologies-taksonomiese studie van die familie Araliaceae en suidelike Afrika. D.Sc. Dissertation, Univ. of Pretoria.

  • Rippa G. (1904). Sul genere Tupidanthus. Bull. Orto Bot. Univ. Napoli 2: 145–151

    Google Scholar 

  • Ronse De Craene L. P. (1992) The androecium of the Magnoliophytina: characterisation and systematic importance. Doctoral thesis, K.U. Leuven.

  • Ronse De Craene L. P. and Miller A. G. (2004). Floral development and anatomy of Dirachma socotrana (Dirachmaceae): a controversial member of the Rosales. Pl. Syst. Evol. 249: 111–127

    Article  Google Scholar 

  • Ronse De Craene L. P. and Smets E. F. (1992). Complex polyandry in the Magnoliatae: definition, distribution and systematic value. Nordic J. Bot. 12: 621–649

    Article  Google Scholar 

  • Ronse De Craene L. P. and Smets E. F. (1998). Meristic changes in gynoecium morphology, exemplified by floral ontogeny and anatomy. In: Owens, S. J. and Rudall, P. J. (eds) Reproductive biology, pp 85–112. Royal Botanic Gardens, Kew

    Google Scholar 

  • Rudall P. J. (2003). Monocot pseudanthia revisited: floral structure of the mycoheterotrophic family Triuridaceae. Int. J. Pl. Sci. 164(Suppl.): S307–S320

    Article  Google Scholar 

  • Rudall P. J. and Bateman R. M. (2003). Evolutionary change in flowers and inflorescences: evidence from naturally occurring terata. Trends Pl. Sci. 8: 76–82

    Article  CAS  Google Scholar 

  • Rudall P. J. and Bateman R. M. (2006). Morphological phylogenetic analysis of Pandanales: testing contrasting hypotheses of floral evolution. Syst. Bot. 31: 223–238

    Article  Google Scholar 

  • Seemann B. (1868). Revision of the natural order Hederaceae. J. Bot. 6: 161–165

    Google Scholar 

  • Sigmond H. (1929). Vergleichende Untersuchungen über die Anatomie und Morphologie von Blütenknospenverschlüssen. Beih. Bot. Centralblatt 56: 1–67

    Google Scholar 

  • Sinjushin A. A. and Gostimsky S. A. (2006). Fasciation in pea: basic principles of morphogenesis. Russ. J. Dev. Biol. 37: 375–381

    Article  Google Scholar 

  • Smith A. C. (1985). Flora Vitiensis Nova, Vol. 3. Pacific Tropical Botanical Garden, Lawai, Hawaii

    Google Scholar 

  • Sokoloff D. D., Rudall P. J. and Remizowa M. V. (2006). Flower-like terminal structures in racemose inflorescences: a tool in morphogenetic and evolutionary research. J. Exp. Bot. 57: 3517–3530

    Article  PubMed  CAS  Google Scholar 

  • Soltis D. E., Soltis P. S., Endress P. K. and Chase M. W. (2005). Phylogeny and evolution of angiosperms. Sinauer Associates, Sunderland

    Google Scholar 

  • Tikhomirov V. N. (1958) Ovary development in Umbelliferae and a question of its morphological nature. Scientific Reports of Higher School, Biol. Sci. (Moscow): 129–138.

  • van Heel W. A. (1987). Androecium development in Actinidia chinensis and A. melanandra (Actinidiaceae). Bot. Jahrb. Syst. 109: 17–23

    Google Scholar 

  • Vázquez-Santana S., Engleman E. M., Martínez-Mena A. and Márquez-Guzmán J. (1998). Ovule and seed development of Lacandonia schismatica (Lacandoniaceae). Amer. J. Bot. 85: 299–304

    Article  Google Scholar 

  • Viguier R. (1906) Recherches botaniques sur la classification des Araliacées. Ann. Sci. Nat., Bot., Sér. 9, 4: 1–210.

    Google Scholar 

  • Viguier R. (1910–1913) Contribution à l'étude de la flore de la Nouvelle-Calédonie. J. Bot. (Morot) 2(3): 38–87.

    Google Scholar 

  • Wang X.-F., Tao Y.-B. and Lu Y.-T. (2002). Pollen tubes enter neighbouring ovules by way of receptacle tissue, resulting in increased fruit-set in Sagittaria potamogetifolia Merr. Ann. Bot. 89: 791–796

    Article  PubMed  Google Scholar 

  • Wen J., Plunkett G. M., Mitchell A. D. and Wagstaff S. J. (2001). The evolution of Araliaceae: a phylogenetic analysis based on ITS sequences of nuclear ribosomal DNA. Syst. Bot. 26: 144–167

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Sokoloff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokoloff, D., Oskolski, A., Remizowa, M. et al. Flower structure and development in Tupidanthus calyptratus (Araliaceae): an extreme case of polymery among asterids. Plant Syst. Evol. 268, 209–234 (2007). https://doi.org/10.1007/s00606-007-0559-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-007-0559-5

Keywords

Navigation