Skip to main content
Log in

Enzyme-free colorimetric assay for mercury(II) using DNA conjugated to gold nanoparticles and strand displacement amplification

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a colorimetric method for the determination of Hg(II) ion. It is based on the color change from red to colorless as displayed by gold nanoparticle (AuNP) modified with thymine - rich DNA. Signal amplification is accomplished by free strand displacement recycling. In this strategy, Hg(II) unfolds the arch-trigger duplex due to the high affinity between Hg(II) and the thymines to form T-Hg(II)-T structures, thereby causing the release of trigger. The liberated trigger unfolds the hairpin structure of H1, and unfolded H1 further unfolds with H2. As a result, the H2 hairpin displaces trigger, and the released trigger unfolds another H1. This results in strong and enzyme-free strand displacement recycling amplification. The aggregation of DNA-AuNPs occurs in the presence of the duplex formed by hairpins H2 and H1. This results in a color change from red to colorless that can be visually observed. Under optimal conditions, the assay has a detection range over 4 orders of magnitude and a 3.4 nM detection limit. The assay is selective, sensitive, rapid and cost-effective. In our perception, it represents a useful platform for determination of Hg(II).

Schematic presentation of the  simple, rapid, low cost colorimetric detection of mercury(II) based on enzyme-free strand displacement amplification along with DNA-labeled AuNP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen JH, Zhou SG, Wen JL (2014) Disposable strip biosensor for visual detection of Hg2+ based on Hg2+-triggered toehold binding and exonuclease III-assisted signal amplification. Anal Chem 86:3108–3114

    Article  CAS  Google Scholar 

  2. Li HL, Zhai JF, Tian JQ, Luo YL, Sun XP (2011) Carbon nanoparticle for highly sensitive and selective fluorescent detection of mercury(II) ion in aqueous solution. Biosens Bioelectron 26:4656–4660

    Article  CAS  Google Scholar 

  3. WHO (2007) Exposure to mercury: a major public health concern. WHO Preventing Disease Through Healthy Environments. Geneva, Switzerland, World Health Organization

  4. Huang PJ, Wang F, Liu JW (2015) Cleavable molecular beacon for Hg2+ detection based on Phosphorothioate RNA modifications. Anal Chem 87:6890–6895

    Article  CAS  Google Scholar 

  5. Office of Water (2001) Mercury update: impact on fish advisories, EPA fact sheet EPA-823-F-01−011. U.S. Environmental Protection Agency, Washington, D. C

    Google Scholar 

  6. Lo JM, Yu JC, Hutchison FI, Waei CM (1982) Solvent extraction of Dithiocarbamate complexes and back-extraction with mercury(II) for determination of trace metals in seawater by atomic absorption spectrometry. Anal Chem 54:2536–2539

    Article  CAS  Google Scholar 

  7. Zenko Y, Masao T (1977) Indirect determination of Submicrogram amounts of sulfide by flameless atomic absorption spectrometry of mercury. Mikrochim Acta 67(5):459–468

    Google Scholar 

  8. Balint L, Vedrina-Dragojević I, Šebečić B, Momirović-Čuljat J, Horvatić M (1997) Spectrofluorometric method for determination of the Total mercury content in environmental samples-waste waters. Mikrochim Acta 127:61–65

    Article  CAS  Google Scholar 

  9. Kim HN, Ren WX, Kim JS, Yoon JY (2012) Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem Soc Rev 41:3210–3244

    Article  CAS  Google Scholar 

  10. Gomez-Ariza J, Lorenzo F, Garcia-Barrera T (2005) Comparative study of atomic fluorescence spectroscopy and inductively coupled plasma mass spectrometry for mercury and arsenic multispeciation. Anal Bioanal Chem 382:485–492

    Article  CAS  Google Scholar 

  11. Gholivand MB, Parvin MH (2010) Differential pulse anodic stripping Voltammetric simultaneous determination of copper (II) and silver (I) with Bis(2-hydroxyacetophenone) butane-2,3-dihydrazone modified carbon paste electrodes. Electroanalysis 22:2291–2296

    Article  CAS  Google Scholar 

  12. Deng W, Tan Y, Li Y, Wen Y, Su Z, Huang Z, Huang S, Meng Y, Xie Q, Luo Y, Yao S (2010) Square wave voltammetric determination of hg(II) using thiol functionalized chitosan-multiwalled carbon nanotubes nanocomposite film electrode. Microchim Acta 169:367–373

    Article  CAS  Google Scholar 

  13. Leermakers M, Baeyens W, Quevauviller P, Horvat M (2005) Mercury in environmental samples: speciation, artifacts and validation. Trends Anal Chem 24:383–393

    Article  CAS  Google Scholar 

  14. Ratner N, Mandler D (2015) Electrochemical detection of low concentrations of mercury in water using gold nanoparticles. Anal Chem 87:5148–5155

    Article  CAS  Google Scholar 

  15. Xue XJ, Wang F, Liu XG (2008) One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J Am Chem Soc 130:3244–3245

    Article  CAS  Google Scholar 

  16. F Zarlaida, M. Adlim, (2016) Gold and silver nanoparticles and indicator dyes as active agents in colorimetric spot and strip tests for mercury(II) ions: a review; Microchim Acta 2016; on the web. DOI: 10.1007/s00604-016-1967-4

  17. Wu S, Li Q, Duan N, Ma H, Wang Z (2016) DNA aptamer selection and aptamer-based fluorometric displacement assay for the hepatotoxin microcystin-RR. Microchim Acta 183(9):2555–2562

    Article  CAS  Google Scholar 

  18. Zhang JF, Lim CS, Cho BR, Kim JS (2010) A two-photon excited luminescence of water-soluble rhodamine–platinum(II) complex: fluorescent probe specific for Hg2+ detection in live cell. Talanta 83:658–662

    Article  CAS  Google Scholar 

  19. Xu Q, Du S, Jin GD, Li HB, Hu XY (2011) Determination of acetamiprid by a colorimetric method based on the aggregation of gold nanoparticles. Microchim Acta 173:323–329

    Article  CAS  Google Scholar 

  20. Zhang J, Tang Y, Lv J, Fang SQ, Tang DP (2015) Glucometer-based quantitative determination of hg(II) using gold particle encapsulated invertase and strong thymine-hg(II)-thymine interaction for signal amplification. Microchim Acta 182:1153–1159

    Article  CAS  Google Scholar 

  21. Shi QN, Shi YP, Pan Y, Yue ZF, Zhang H, Yi CQ (2015) Colorimetric and bare eye determination of urinary methylamphetamine based on the use of aptamers and the salt-induced aggregation of unmodified gold nanoparticles. Microchim Acta 182:505–511

    Article  CAS  Google Scholar 

  22. Wang H, Wang YX, Jin JY, Yang RH (2008) Gold nanoparticle-based colorimetric and “turn-on” fluorescent probe for mercury(II) ions in aqueous solution. Anal Chem 80:9021–9028

    Article  CAS  Google Scholar 

  23. Wang GF, Huang H, Zhang XJ, Wang L (2012) Electrically contacted enzyme based on dual hairpin DNA structure and its application for amplified detection of Hg2+. Biosens Bioelectron 35:108–114

    Article  CAS  Google Scholar 

  24. Cao GX, Wu XM, Dong YM, Li ZJ, Wang GL (2016) Colorimetric determination of melamine based on the reversal of the mercury(II) induced inhibition of the light-triggered oxidase-like activity of gold nanoclusters. Microchim Acta 183:441–448

    Article  CAS  Google Scholar 

  25. Yuan M, Zhu YG, Lou XH, Chen C, Wei G, Lan MB, Zhao JL (2012) Sensitive label-free oligonucleotide-based microfluidic detection of mercury(II)ion by using exonuclease I. Biosens Bioelectron 31:330–336

    Article  CAS  Google Scholar 

  26. Wang GF, Xu G, Zhu YH, Zhang XJ (2014) A “turn-on” carbon nanotube–ag nanoclusters fluorescent sensor for sensitive and selective detection of Hg2+ with cyclic amplification of exonuclease III activity. Chem Commun 50:747–750

    Article  CAS  Google Scholar 

  27. Zhu X, Zhou XM, Xing D (2011) Ultrasensitive and selective detection of mercury(II) in aqueous solution by polymerase assisted fluorescence amplification. Biosens Bioelectron 26:2666–2669

    Article  CAS  Google Scholar 

  28. Zhu GC, Li Y, Zhang CY (2014) Simultaneous detection of mercury(II) and silver(I)ions with picomolar sensitivity. Chem Commun 50:572–574

    Article  CAS  Google Scholar 

  29. Xu YY, Zhou WJ, Zhou M, Xiang Y, Yuan R, Chai YQ (2015) Toehold strand displacement-driven assembly of G-quadruplex DNA for enzyme-free and non-label sensitive fluorescent detection of thrombin. Biosens Bioelectron 64:306–310

    Article  CAS  Google Scholar 

  30. Quan K, Huang J, Yang XH, Yang YJ, Ying L, Wang H, He Y, Wang KM (2015) An enzyme-free and amplified colorimetric detection strategy via target–aptamer binding triggered catalyzed hairpin assembly. Chem Commun 51:937–940

    Article  CAS  Google Scholar 

  31. Yan FY, Kong DP, Luo YM, Ye QH, He JJ, Guo XF, Chen L (2016) Carbon dots serve as an effective probe for the quantitative determination and for intracellular imaging of mercury(II). Microchim Acta 183:1611–1618

    Article  CAS  Google Scholar 

  32. Lu Y, Yu J, Ye WC, Yao X, Zhou PP, Zhang HX, Zhao SQ, Jia LP (2016) Spectrophotometric determination of mercury(II) ions based on their stimulation effect on the peroxidase-like activity of molybdenum disulfide nanosheets. Microchim Acta 183:2481–2489

    Article  CAS  Google Scholar 

  33. Shi DC, Yan FY, Zhou XG, Zheng TC, Shi YY, Fu WG, Chen L (2016) Preconcentration and fluorometric detection of mercury ions using magnetic core-shell chitosan microspheres modified with a rhodamine spirolactam. Microchim Acta 183:319–327

    Article  CAS  Google Scholar 

  34. Mojtaba S, Afsaneh S, Zahra M, Raheleh A (2016) Highly selective aggregation assay for visual detection of mercury ion based on competitive binding of sulfur-doped carbon nanodots to gold nanoparticles and mercury ions. Microchim Acta 183:2327–2335

    Article  Google Scholar 

  35. Khosro ZK, Alagarsamy P, Subramaniam J, Ramasamy R, Hong NL, Boon HO, SDB C, Yeh YK, Huang NM (2016) Amalgamation based optical and colorimetric sensing of mercury(II) ions with silver@graphene oxide nanocomposite materials. Microchim Acta 183:369–377

    Article  Google Scholar 

  36. Hu TY, Yan X, Na WD, Su XG (2016) Aptamer-based aggregation assay for mercury(II) using gold nanoparticles and fluorescent CdTe quantum dots. Microchim Acta 183:2131–2137

    Article  CAS  Google Scholar 

  37. Tang WJ, Wang Y, Wang PP, Di JW, Yang JP, Wu Y (2016) Synthesis of strongly fluorescent carbon quantum dots modified with polyamidoamine and a triethoxysilane as quenchable fluorescent probes for mercury(II). Microchim Acta 183:2571–2578

    Article  CAS  Google Scholar 

  38. An’amt MN, Perumal R, Huang NM, Wei LS (2016) Visual and spectrophotometric determination of mercury(II) using silver nanoparticles modified with graphene oxide. Microchim Acta 183:597–603

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC (21405060, 1471644), Shandong Province Natural Science Funds for Distinguished Young Scholars (JQ201410), and Shandong Province Natural Science Funds (ZR2015CM027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 680 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Leng, X., Wang, X. et al. Enzyme-free colorimetric assay for mercury(II) using DNA conjugated to gold nanoparticles and strand displacement amplification. Microchim Acta 184, 1969–1976 (2017). https://doi.org/10.1007/s00604-017-2182-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2182-7

Keywords

Navigation