Skip to main content
Log in

Benchmark Results for Few-Body Hypernuclei

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The Non-Symmetrized Hyperspherical Harmonics method (NSHH) is introduced in the hypernuclear sector and benchmarked with three different ab-initio methods, namely the Auxiliary Field Diffusion Monte Carlo method, the Faddeev–Yakubovsky approach and the Gaussian Expansion Method. Binding energies and hyperon separation energies of three- to five-body hypernuclei are calculated by employing the two-body \(\varLambda \hbox {N}\) component of the phenomenological Bodmer–Usmani potential (Bodmer and Usmani in Nucl Phys A 477:621, 1988; Usmani and Khanna in J Phys G 35:025105, 2008), and a hyperon-nucleon interaction (Hiyama et al. in Phus Rev C 65:011301, 2001) simulating the scattering phase shifts given by NSC97f (Rijken et al. in Phys Rev C 59:21, 1999). The range of applicability of the NSHH method is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.R. Bodmer, Q.N. Usmani, Nucl. Phys. A 477, 621 (1988)

    Article  ADS  Google Scholar 

  2. A.A. Usmani, F.C. Khanna, J. Phys. G 35, 025105 (2008)

    Article  ADS  Google Scholar 

  3. E. Hiyama, M. Kamimura, T. Motoba, T. Yamada, Y. Yamamoto, Phys. Rev. C 65, 011301 (2001)

    Article  ADS  Google Scholar 

  4. T.A. Rijken, V.G.J. Stoks, Y. Yamamoto, Phys. Rev. C 59, 21 (1999)

    Article  ADS  Google Scholar 

  5. J. Kadyk et al., Nucl. Phys. B 27, 13 (1971)

    Article  ADS  Google Scholar 

  6. V.G.J. Stoks et al., Phys. Rev. C 48, 792 (1993)

    Article  ADS  Google Scholar 

  7. D. Lonardoni, S. Gandolfi, F. Pederiva, Phys. Rev. C 87, 041303R (2013)

    Article  ADS  Google Scholar 

  8. D. Lonardoni, S. Gandolfi, F. Pederiva, Phys. Rev. C 89, 014314 (2014)

    Article  ADS  Google Scholar 

  9. S. Gandolfi, F. Pederiva, S. Fantoni, K.E. Schmidt, Phys. Rev. Lett. 99, 022507 (2007)

    Article  ADS  Google Scholar 

  10. O. Yakubovsky, Sov. J. Nucl. Phys. 5, 937 (1967)

    Google Scholar 

  11. M. Gattobigio, A. Kievsky, M. Viviani, Phys. Rev. C 83, 024001 (2011)

    Article  ADS  Google Scholar 

  12. S. Deflorian, N. Barnea, W. Leidemann, G. Orlandini, Few-Body Syst. 54, 1879 (2013)

    Article  ADS  Google Scholar 

  13. N. Barnea, W. Leidemann, G. Orlandini, Nucl. Phys. A 693, 565 (2001)

    Article  ADS  Google Scholar 

  14. R.B. Wiringa, S.C. Pieper, Phys. Rev. Lett. 89, 182501 (2002)

    Article  ADS  Google Scholar 

  15. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995)

    Article  ADS  Google Scholar 

  16. A. Nogga, (2016), Private Communications

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ferrari Ruffino.

Additional information

This article belongs to the Topical Collection “The 23rd European Conference on Few-Body Problems in Physics”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrari Ruffino, F., Lonardoni, D., Barnea, N. et al. Benchmark Results for Few-Body Hypernuclei. Few-Body Syst 58, 113 (2017). https://doi.org/10.1007/s00601-017-1273-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-017-1273-7

Navigation