Skip to main content
Log in

Bound States for a Klein–Gordon Particle in Vector Plus Scalar Generalized Hulthén Potentials in D Dimensions

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The Green’s function associated with a Klein–Gordon particle moving in a D-dimensional space under the action of vector plus scalar q-deformed Hulthén potentials is constructed by path integration for \({q \geq 1}\) and \({\frac{1}{\alpha} \ln q < r < \infty}\). An appropriate approximation of the centrifugal potential term and the technique of space-time transformation are used to reduce the path integral for the generalized Hulthén potentials into a path integral for q-deformed Rosen–Morse potential. Explicit path integration leads to the radial Green’s function for any l state in closed form. The energy spectrum and the correctly normalized wave functions, for a state of orbital quantum number \({l \geq 0}\), are obtained. Eventually, the vector q-deformed Hulthén potential and the Coulomb potentials in D dimensions are considered as special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simsek M., Egrifes H.: The Klein–Gordon equation of generalized Hulthén potential in complex quantum mechanics. J. Phys. A Math. Gen. 37, 4379 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Egrifes H., Sever R.: Bound-state solutions of the Klein–Gordon equation for the generalized PT-symmetric Hulthén potential. Int. J. Theor. Phys. 46, 935 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen G., Chen Z.D., Lou Z.M.: Exact bound state solutions of the s-wave Klein–Gordon equation with the generalized Hulthén potential. Phys. Lett. A 331, 374 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Ŏlgar E., Koç R., Tütüncüler H.: The exact solution of the s-wave Klein–Gordon equation for the generalized Hulthén potential by the asymptotic iteration method. Phys. Scr. 78, 015011 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Qiang W.C., Zhou R.S., Gao Y.: Any l-state solutions of the Klein–Gordon equation with the generalized Hulthén potential. Phys. Lett. A 371, 201 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Benamira F., Guechi L., Mameri S., Sadoun M.A.: Path integral solutions for Klein–Gordon particle in vector plus scalar generalized Hulthén and Woods–Saxon potentials. J. Math. Phys. 51, 032301 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Saad N.: The Klein–Gordon equation with a generalized Hulthén potential in D-dimensions. Phys. Scr. 76, 623 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Agboola D.: Comment on ‘The Klein–Gordon equation with a generalized Hulthén potential in D dimensions’. Phys. Scr. 81, 067001 (2010)

    Article  ADS  MATH  Google Scholar 

  9. Boudjedaa T., Chetouani L., Guechi L., Hammann T.F.: Path integral for particles of spin zero and 1/2 in the field of an electromagnetic plane wave. Phys. Scr. 46, 289 (1992)

    Article  ADS  Google Scholar 

  10. Feynman R.P.: Mathematical formulation of the quantum theory of electromagnetic interaction. Phys. Rev. 80, 440 (1950)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Schwinger J.: On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Schulman L.S.: Techniques and Applications of Path Integration. Wiley, New York (1981)

    MATH  Google Scholar 

  13. Bentag B., Chetouani L., Guechi L., Hammann T.F.: Relativistic particles in interaction with a plane wave plus a parallel magnetic field: a path integral treatment. Il Nuovo Cimento B 111, 99 (1996)

    Article  ADS  Google Scholar 

  14. Chetouani L., Guechi L., Hammann T.F., Messouber A.: Path integral for Klein–Gordon particle in vector plus scalar Hulthén-type potentials. Physica A 234, 529 (1996)

    Article  ADS  Google Scholar 

  15. Bateman, H.: Higher Transcendental Functions, vol. 2. p. 232. McGraw Hill, New York

  16. Grosche C., Steiner F.: The path integral on the pseudosphere. Ann. Phys. (N. Y) 182, 120 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Kleinert H.: Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Financial Markets, 5th edn. World Scientific, Singapore (2009)

    Book  MATH  Google Scholar 

  18. Arai A.: Exact solutions of the Schrödinger equation for two “deformed” hyperbolic molecular potentials. J. Math. Anal. Appl. 158, 63 (1991)

    Article  MathSciNet  Google Scholar 

  19. Arai A.: Exact solutions of multi-component nonlinear Schrödinger and Klein–Gordon equations in two-dimensional space-time. J. Phys. A Math. Gen. 34, 4281 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Mc Laughlin D.W., Schulman L.S.: Path integrals in curved spaces. J. Math. Phys. 12, 2520 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  21. Rosen N., Morse P.M.: On the vibrations of polyatomic molecules. Phys. Rev. 42, 210 (1932)

    Article  ADS  MATH  Google Scholar 

  22. Grosche C.: Path integral solutions for deformed Poschl-Teller-like and conditionally solvable potentials. J. Phys. A Math. Gen. 38, 2947 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Benamira F., Guechi L., Mameri S., Sadoun M.A.: Exact path integral treatment of a diatomicmolecule potential. J. Math. Phys. 48, 032102 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Benamira F., Guechi L., Mameri S., Sadoun M.A.: Unified path integral treatment for generalized Hulthén and Woods–Saxon potentials. Ann. Phys. (NY) 332, 2179 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Landau L.D., Lifchitz E.M.: Quantum Mechanics. Pergamon, Oxford (1958)

    Google Scholar 

  26. Gradshtein I.S., Ryzhik I.M.: Tables of Integrals, Series and Products. Academic Press, New York (1965)

    Google Scholar 

  27. Vaidya, A.N., Silva Souza, L.E.: Green Function for Spin 1/2 particle in a Coulomb + Scalar Potential. arXiv: hep-th/0203133, (2002)

  28. Milshtein, A.I., Strakhovenko, V.M.: The O(2, 1) algebra and the electron green function in a coulomb field. Phys. Lett. A 90, 447 (1982)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Guechi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggoun, L., Benamira, F., Guechi, L. et al. Bound States for a Klein–Gordon Particle in Vector Plus Scalar Generalized Hulthén Potentials in D Dimensions. Few-Body Syst 57, 229–239 (2016). https://doi.org/10.1007/s00601-015-1037-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-015-1037-1

Keywords

Navigation