Skip to main content
Log in

Nonrelativistic limit of normalized solutions to a class of nonlinear Dirac equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we investigate the nonrelativistic limit of normalized solutions to a nonlinear Dirac equation as given below:

$$\begin{aligned} {\left\{ \begin{array}{ll} &{}-i c\sum \limits _{k=1}^3\alpha _k\partial _k u +mc^2 \beta {u}- \Gamma * (K |{u}|^\kappa ) K|{u}|^{\kappa -2}{u}- P |{u}|^{s-2}{u}=\omega {u}, \\ &{}\displaystyle \int _{\mathbb {R}^3}\vert u \vert ^2 dx =1. \end{array}\right. } \end{aligned}$$

Here, \(c>0\) represents the speed of light, \(m > 0\) is the mass of the Dirac particle, \(\omega \in \mathbb {R}\) emerges as an indeterminate Lagrange multiplier, \(\Gamma \), K, P are real-valued function defined on \(\mathbb {R}^3\), also known as potential functions. Our research first confirms the presence of normalized solutions to the Dirac equation under high-speed light conditions. We then illustrate that these solutions converge to normalized ground states of nonlinear Schrödinger equations, and we also show uniform boundedness and exponential decay of these solutions. Our results form the first discussion on nonrelativistic limit of normalized solutions to nonlinear Dirac equations. This not only aids in the study of normalized solutions of the nonlinear Schrödinger equations, but also physically explains that the normalized ground states of high-speed particles and low-speed motion particles are consistent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

There are no new data associated with this article.

References

  1. Bartsch, T., Ding, Y.: Solutions of nonlinear Dirac equations. J. Differ. Equ. 226(1), 210–249 (2006)

    Article  MathSciNet  Google Scholar 

  2. Bechouche, P., Mauser, N.J., Selberg, S.: On the asymptotic analysis of the Dirac-Maxwell system in the nonrelativistic limit. J. Hyperbolic Differ. Equ. 2(1), 129–182 (2005)

    Article  MathSciNet  Google Scholar 

  3. Benhassine, A.: Standing wave solutions of Maxwell-Dirac systems. Calc. Var. Partial Differ. Equ. 60(3), 107,20 (2021)

    Article  MathSciNet  Google Scholar 

  4. Borrelli, W., Carlone, R., Tentarelli, L.: Nonlinear Dirac equation on graphs with localized nonlinearities: bound states and nonrelativistic limit. SIAM J. Math. Anal. 51(2), 1046–1081 (2019)

    Article  MathSciNet  Google Scholar 

  5. Borrelli, W., Carlone, R., Tentarelli, L.: On the nonlinear Dirac equation on noncompact metric graphs. J. Differ. Equ. 278, 326–357 (2021)

    Article  MathSciNet  Google Scholar 

  6. Buffoni, B., Esteban, M.J., Séré, E.: Normalized solutions to strongly indefinite semilinear equations. Adv. Nonlinear Stud. 6(2), 323–347 (2006)

    Article  MathSciNet  Google Scholar 

  7. Chen, P., Ding, Y., Wang, H.-Y.: Solutions to a nonlinear Dirac-Maxwell system: from periodic waves to soliton-like waves. Nonlinearity 35(12), 6422 (2022)

    Article  MathSciNet  Google Scholar 

  8. Coti Zelati, V., Nolasco, M.: Ground state for the relativistic one electron atom in a self-generated electromagnetic field. SIAM J. Math. Anal. 51(3), 2206–2230 (2019)

    Article  MathSciNet  Google Scholar 

  9. Coti Zelati, V., Nolasco, M.: Normalized solutions for the Klein-Gordon-Dirac system. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 34(1), 101–126 (2023)

    MathSciNet  Google Scholar 

  10. Ding, Y.: Variational methods for strongly indefinite problems, volume 7 of Interdisciplinary Mathematical Sciences. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007

  11. Ding, Y., Dong, X., Guo, Q.: Nonrelativistic limit and some properties of solutions for nonlinear Dirac equations. Calc. Var. Partial Differ. Equ. 60(4), 144,23 (2021)

    Article  MathSciNet  Google Scholar 

  12. Ding, Y., Ruf, B.: Solutions of a nonlinear Dirac equation with external fields. Arch. Ration. Mech. Anal. 190(1), 57–82 (2008)

    Article  MathSciNet  Google Scholar 

  13. Ding, Y., Yu, Y., Zhao, F.: \(L^2\)-normalized solitary wave solutions of a nonlinear Dirac equation. J. Geom. Anal. 33(2), 69,25 (2023)

    Article  Google Scholar 

  14. Dong, X., Ding, Y., Guo, Q.: Nonrelativistic limit and nonexistence of stationary solutions of nonlinear Dirac equations. J. Differ. Equ. 372, 161–193 (2023)

    Article  MathSciNet  Google Scholar 

  15. Ellis, D.E., Rosén, A., Walch, P.F.: Applications of the Dirac-Slater model to molecules. Int. J. Quantum Chem. 9, 351–358 (1975)

    Article  Google Scholar 

  16. Esfahani, A.: Anisotropic Gagliardo-Nirenberg inequality with fractional derivatives. Z. Angew. Math. Phys. 66(6), 3345–3356 (2015)

    Article  MathSciNet  Google Scholar 

  17. Esteban, M.J., Georgiev, V., Séré, E.: Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations. Calc. Var. Partial Differ. Equ. 4(3), 265–281 (1996)

    Article  MathSciNet  Google Scholar 

  18. Esteban, M.J., Séré, E.: Stationary states of the nonlinear Dirac equation: a variational approach. Comm. Math. Phys. 171(2), 323–350 (1995)

    Article  MathSciNet  Google Scholar 

  19. Esteban, M.J., Séré, E.: Nonrelativistic limit of the Dirac-Fock equations. Ann. Henri Poincaré 2(5), 941–961 (2001)

    Article  MathSciNet  Google Scholar 

  20. Finkelstein, R., LeLevier, R., Ruderman, M.: Nonlinear spinor fields. Phys. Rev. 83(2), 326–332 (1951)

    Article  MathSciNet  Google Scholar 

  21. Hislop, P.D.: Exponential decay of two-body eigenfunctions: a review. In: Proceedings of the Symposium on Mathematical Physics and Quantum Field Theory (Berkeley, CA, 1999), volume 4 of Electron. J. Differ. Equ. Conf., pages 265–288. Southwest Texas State Univ., San Marcos, TX, (2000)

  22. Ionescu, D.C., Reinhardt, J., Muller, B., Greiner, W., Soff, G.: Nonlienar extensions of the Dirac equation and their implications in QED. Phys. Rev. A 38(2), 616–620 (1988)

    Article  Google Scholar 

  23. Kibble, T.W.B.: Relativistic models of nonlinear quantum mechanics. Comm. Math. Phys., 64(1), 73–82, (1978/79)

  24. Lieb, E.H., Loss, M.: Analysis, volume 14 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, (2001)

  25. Machihara, S., Nakanishi, K., Ozawa, T.: Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations. Math. Ann. 322(3), 603–621 (2002)

    Article  MathSciNet  Google Scholar 

  26. Machihara, S., Nakanishi, K., Ozawa, T.: Small global solutions and the nonrelativistic limit for the nonlinear Dirac equation. Rev. Mat. Iberoamericana 19(1), 179–194 (2003)

    Article  MathSciNet  Google Scholar 

  27. Najman, B.: The nonrelativistic limit of the nonlinear Dirac equation. Ann. Inst. H. Poincaré C Anal. Non Linéaire 9(1), 3–12 (1992)

    Article  MathSciNet  Google Scholar 

  28. Natarajan, L.: Spin-polarized Dirac-Slater calculations on the energies of hollow argon atom. Eur. Phys. J. D 15, 287–292 (2001)

    Article  Google Scholar 

  29. Ng, W.K., Parwani, R.R.: Nonlinear Dirac equations. Symm. Integr. Geom. Method. Appl., 5, (2009)

  30. Ng, W.K., Parwani, R.R.: Probing quantum nonlinearities through neutrino oscillations. Mod. Phys. Lett. A 25(10), 793–804 (2010)

    Article  Google Scholar 

  31. Nolasco, M.: A normalized solitary wave solution of the Maxwell-Dirac equations. Ann. Inst. H. Poincaré C Anal. Non Linéaire 38(6), 1681–1702 (2021)

    Article  MathSciNet  Google Scholar 

  32. Scalora, M., Syrchin, M.S., Akozbek, N., Poliakov, E.Y., D’Aguanno, G., Mattiucci, N., Bloemer, M.J., Zheltikov, A.M.: Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: application to negative index materials. Phys. Rev. Lett. 95(1), 013902 (2005)

    Article  Google Scholar 

  33. Weinberg, S.: Testing quantum mechanics. Ann. Phys. 194(2), 336–386 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Key R &D Program of China (Grant No. 2022YFA1005601) and the National Natural Science Foundation of China (Grant Nos. 12201625, 12271508 and 12031015). The authors would also like to thank anonymous referees for careful reading and checking of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Guo.

Ethics declarations

Conflict of interest

None.

Additional information

Communicated by J. Jost.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 2.7 Let \(P\in L^{\infty }(\mathbb {R}^3)\), then for any \({u} \in H^{1/2}(\mathbb {R}^3,\mathbb {C}^4) \), with \(\Vert {u}\Vert _{L^2}=1\), \({u}=t w+u^- \), where \(w=\frac{{u}_+}{\Vert {u}_+\Vert _{L^2}}\), \(t=\sqrt{1-\Vert u^-\Vert _{L^2}^2}\), the following inequality holds

$$\begin{aligned} \int _{\mathbb {R}^3 }P |{u}|^s dx\ge C \int _{\mathbb {R}^3 }P |w|^sdx-C \Vert u^- \Vert _{L^2}^2\Vert w\Vert _{H^{1/2}}^2- C \Vert u^- \Vert _{H^{1/2}}^2. \end{aligned}$$

For \(w=\textbf{U}_{\textrm{FW}}^{-1}\left( \begin{array}{l}v \\ 0\end{array}\right) \) with \(v \in H^1\left( \mathbb {R}^3, \mathbb {C}^2\right) \) and \(\Vert v\Vert _{L^2}^2=1\), we have

$$\begin{aligned} \int _{\mathbb {R}^3 } P |{u}|^sdx\ge C \int _{\mathbb {R}^3 } P |v|^sdx- C \Vert \nabla v\Vert _{L^2}^s- C \Vert u^- \Vert _{L^2}^2\Vert w\Vert _{H^{1/2}}^2- C \Vert u^- \Vert _{H^{1/2}}^2. \end{aligned}$$

Proof

Notice for \(u=tw+u^-\), one has

$$\begin{aligned} \begin{aligned} \int _{\mathbb {R}^3}P|u|^sdx\ge&2^{1-s}t^s\int _{\mathbb {R}^3}P|\omega |^s dx- \int _{\mathbb {R}^3}P|u^-|^sdx\\ \ge&C \int _{\mathbb {R}^3}P|\omega |^s dx- C \Vert u^-\Vert _{L^2}^2\int _{\mathbb {R}^3}P|\omega |^sdx- \int _{\mathbb {R}^3}P|u^-|^sdx\\ \ge&C \int _{\mathbb {R}^3 }P |w|^s dx- C \Vert u^- \Vert _{L^2}^2\Vert w\Vert _{H^{1/2}}^2- C \Vert u^- \Vert _{H^{1/2}}^2. \end{aligned} \end{aligned}$$

Now for \(w=\textbf{U}_{\textrm{FW}}^{-1}\left( \begin{array}{l}v \\ 0\end{array}\right) \) with \(v \in H^1\left( \mathbb {R}^3, \mathbb {C}^2\right) \) and \(\Vert v\Vert _{L^2}^2=1\), we have

$$\begin{aligned} w(x)=\mathcal {F}^{-1}\textbf{U}^{-1}\left( \begin{array}{l}{\hat{v}} \\ 0\end{array}\right) =\left( \begin{array}{l}\mathcal {F}^{-1}[\Upsilon _-(\xi )\frac{\varvec{\sigma }\cdot \xi }{|\xi |}{\hat{v}}] \\ \mathcal {F}^{-1}[\Upsilon _+(\xi ){\hat{v}}]\end{array}\right) (x). \end{aligned}$$

Set \(g(x)= \mathcal {F}^{-1}[\Upsilon _+(\xi ){\hat{v}}](x)\), \(f(x)=\mathcal {F}^{-1}[1-\Upsilon _+(\xi ){\hat{v}}](x)\), then \(g=v-f\) and

$$\begin{aligned} \int _{\mathbb {R}^3}P|\omega |^s dx\ge \int _{\mathbb {R}^3}P|g|^sdx \ge 2^{1-s}\int _{\mathbb {R}^3}P|v|^sdx - \int _{\mathbb {R}^3}P|f|^sdx. \end{aligned}$$

Since

$$\begin{aligned} | 1-\Upsilon _+(\xi )|=\frac{1-\Upsilon _+(\xi )^2}{1+\Upsilon _+(\xi )}=\frac{\Upsilon _-(\xi )^2}{1+\Upsilon _+(\xi )}\le \Upsilon _-(\xi )^2, \end{aligned}$$

then we obtain

$$\begin{aligned} \begin{aligned}{} & {} \Vert f\Vert ^2=\Vert (\lambda (\xi ))^{1/2}| 1-\Upsilon _+(\xi ){\hat{v}}|\Vert _{L^2}^2\le \Vert (\lambda (\xi ))^{1/2}| \Upsilon _-(\xi ){\hat{v}}|\Vert _{L^2}^2= \frac{1}{2}(\Vert v\Vert ^2-mc^2\Vert v\Vert _{L^2}^2)\\{} & {} \quad \le \frac{1}{4m}\Vert \nabla v\Vert _{L^2}^2,\end{aligned} \end{aligned}$$

which implies

$$\begin{aligned} \int _{\mathbb {R}^3 } P |{u}|^sdx\ge C \int _{\mathbb {R}^3 } P |v|^sdx- C \Vert \nabla v\Vert _{L^2}^s- C \Vert u^- \Vert _{L^2}^2\Vert w\Vert _{H^{1/2}}^2- C \Vert u^- \Vert _{H^{1/2}}^2. \end{aligned}$$

This ends the proof. \(\square \)

Lemma 2.8 Let \(\Gamma \) satisfy \((\Gamma _1),\) then \(\mathscr {F}: H^{1/2}\rightarrow L^p\) is locally Lipschitz, where \(p\in [2,3]\).

Proof

It is sufficient to show the case when \(p=2\) and 3. When \(p=3\), for \( u _1, u _2\in H^{1/2}\), one has

$$\begin{aligned} \mathscr {F}( u _1)-\mathscr {F}( u _2)=\frac{1}{2}\Gamma *\left( K \left( | u _1|^\kappa -| u _2|^\kappa \right) \right) \left( K | u _1|^{\kappa -1}+K| u _2|^{\kappa -1}\right)&\\+\frac{1}{2}\Gamma *\left( K \left( | u _1|^\kappa +| u _2|^\kappa \right) \right) \left( K| u _1|^{\kappa -1}-K| u _2|^{\kappa -1}\right) .&\end{aligned}$$

Hence for \(t_i\), \(s_i>0\)(\(i=1,2\)) satisfying \(\frac{1}{3}=\frac{1}{t_i}+\frac{1}{s_i},\) we have

$$\begin{aligned} \begin{aligned} \Vert \mathscr {F}( u _1)-\mathscr {F}( u _2)\Vert _{L^3}\lesssim \Vert \Gamma *\left( | u _1|^\kappa -| u _2|^\kappa \right) \Vert _{L^{t_{1}}}\Vert | u _1|^{\kappa -1} +| u _2|^{\kappa -1}\Vert _{L^{s_{1}}}&\\ +\Vert \Gamma *\left( | u _1|^\kappa +| u _2|^\kappa \right) \Vert _{L^{t_{2}}}\Vert | u _1|^{\kappa -1}-| u _2|^{\kappa -1}\Vert _{L^{s_{2}} }.&\end{aligned} \end{aligned}$$

By Young inequality, for \(t_i\), \(r_i\) satisfying \(\frac{1}{t_i}+1= \frac{14-6\kappa }{6}+ \frac{1}{r_i}\), \(i=1,2\), one has

$$\begin{aligned}{} & {} \Vert \Gamma *\left( | u _1|^\kappa -| u _2|^\kappa \right) \Vert _{L^{t_{1}}}\lesssim \Vert | u _1|^\kappa -| u _2|^\kappa \Vert _{L^{r_{1}}}, \\{} & {} \Vert \Gamma *\left( | u _1|^\kappa +| u _2|^\kappa \right) \Vert _{L^{t_{2}}}\lesssim \left\| | u _1|^\kappa +| u _2|^\kappa \right\| _{L^{r_{2}}}. \end{aligned}$$

Notice

$$\begin{aligned} || u _1|^\kappa -| u _2|^\kappa |\lesssim | u _1- u _2|\cdot \left| | u _1|^{\kappa -1}+| u _2|^{\kappa -1}\right| , \end{aligned}$$

then for \(r_1\), m, n satisfying \(\frac{1}{r_1}=\frac{1}{m}+\frac{1}{n}\), one has

$$\begin{aligned}{} & {} \Vert \Gamma *\left( | u _1|^\kappa -| u _2|^\kappa \right) \Vert _{L^{t_{1}}}\Vert | u _1|^{\kappa -1}+| u _2|^{\kappa -1}\Vert _{L^{s_{1}}}\lesssim \Vert u _1- u _2\Vert _{L^m}\Vert | u _1|^{\kappa -1}\\{} & {} \quad +| u _2|^{\kappa -1}\Vert _{L^{s_{1}}}\Vert | u _1|^{\kappa -1}+| u _2|^{\kappa -1}\Vert _{L^n} \end{aligned}$$

where \(\frac{1}{s_1}+\frac{1}{m}+\frac{1}{n}=\kappa -1\). Let \(s_1=n\), \(m=\max \left\{ 2,\frac{3}{\kappa -1}\right\} \), then \(s_1=n\in \left[ \frac{6}{3\kappa -4},\frac{3}{\kappa -1}\right] \). Hence

$$\begin{aligned} \Vert \Gamma *\left( | u _1|^\kappa -| u _2|^\kappa \right) \Vert _{L^{t_{1}}}\Vert | u _1|^{\kappa -1}+| u _2|^{\kappa -1}\Vert _{L^{s_{1}}}\lesssim \left( \Vert u _1\Vert +\Vert u _2\Vert \right) ^{2\kappa -2}\Vert u _1- u _2\Vert . \end{aligned}$$

Similarly, for \(s_2\), m, n satisfying \(\frac{1}{s_2}=\frac{1}{m}+\frac{1}{n}\), one has

$$\begin{aligned}{} & {} \Vert \Gamma *\left( | u _1|^\kappa +| u _2|^\kappa \right) \Vert _{L^{t_{2}}}\Vert | u _1|^{\kappa -1}-| u _2|^{\kappa -1}\Vert _{L^{s_{2}} }\lesssim \Vert u _1- u _2\Vert _{L^m}\Vert | u _1|^\kappa \\{} & {} \quad +| u _2|^\kappa \Vert _{L^{r_{2}}}\Vert | u _1|^{\kappa -2}+| u _2|^{\kappa -2}\Vert _{L^n} \end{aligned}$$

where \(\frac{1}{r_2}+\frac{1}{m}+\frac{1}{n}=\kappa -1\). Take \(m=3\), \(n =\frac{3}{\kappa -2}\), \(r_2=\frac{3}{2\kappa -2}\), we get

$$\begin{aligned} \Vert \Gamma *\left( | u _1|^\kappa +| u _2|^\kappa \right) \Vert _{L^{t_{2}}}\Vert | u _1|^{\kappa -1}-| u _2|^{\kappa -1}\Vert _{L^{s_{2}} }\lesssim \left( \Vert u _1\Vert +\Vert u _2\Vert \right) ^{2\kappa -2}\Vert u _1- u _2\Vert . \end{aligned}$$

Consequently,

$$\begin{aligned} \Vert \mathscr {F}( u _1)-\mathscr {F}( u _2)\Vert _{L^3}\lesssim \left( \Vert u _1\Vert +\Vert u _2\Vert \right) ^{2\kappa -2}\Vert u _1- u _2\Vert . \end{aligned}$$

When \(p=2\), we can also get

$$\begin{aligned} \Vert \mathscr {F}( u _1)-\mathscr {F}( u _2)\Vert _{L^2}\lesssim \left( \Vert u _1\Vert +\Vert u _2\Vert \right) ^{2\kappa -2}\Vert u _1- u _2\Vert . \end{aligned}$$

Hence by interpolation inequality, for \(p\in [2,3]\),

$$\begin{aligned} \Vert \mathscr {F}( u _1)-\mathscr {F}( u _2)\Vert _{L^p}\lesssim \left( \Vert u _1\Vert +\Vert u _2\Vert \right) ^{2\kappa -2}\Vert u _1- u _2\Vert . \end{aligned}$$

This ends the proof. \(\square \)

Future remark. Although the method of nonrelativistic limit has effectively addressed some of the difficulties in the normalized solution problem of the nonlinear Dirac equations, there still exist some urgent public issues that need to be resolved, such as: (1) The case where the potential function does not have a compactness assumption, (2) The super-mass-critical case of the nonlinear term, i.e., \(s\in (8/3,3)\), (3) How fast the nonrelativistic limit process is.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Ding, Y., Guo, Q. et al. Nonrelativistic limit of normalized solutions to a class of nonlinear Dirac equations. Calc. Var. 63, 90 (2024). https://doi.org/10.1007/s00526-024-02702-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-024-02702-y

Mathematics Subject Classification

Navigation