Skip to main content
Log in

Capture Reactions with Halo Effective Field Theory

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Loosely bound nuclei far from the stability region emerge as a quantum phenomenon with many universal properties. The connection between these properties and the underlying symmetries can be best explored with halo/cluster EFT, an effective field theory where the softness of the binding momentum and the hardness of the core(s) form the expansion parameter of a given perturbative approach. In the following I highlight a particular application where these ideas are being tested, namely capture reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braaten E., Hammer H.-W.: Universality in few-body systems with large scattering length. Phys. Rep. 428, 259 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  2. Bertulani C.A., Hammer H.-W., van Kolck U.: Effective field theory for halo nuclei: shallow p-wave states. Nucl. Phys. A712, 37 (2002)

    Article  ADS  Google Scholar 

  3. Bedaque P.F., Hammer H.-W., van Kolck U.: Narrow resonances in effective field theory. Phys. Lett. B569, 159 (2003)

    Article  ADS  Google Scholar 

  4. Higa R., Hammer H.-W., van Kolck U.: \({\alpha\alpha}\) scattering in halo effective field theory. Nucl. Phys. A809, 171 (2008)

    Article  ADS  Google Scholar 

  5. Gelman B.A.: Narrow resonances and short-range interactions. Phys. Rev. C 80, 034005 (2009)

    Article  ADS  Google Scholar 

  6. Phillips D.R., Hammer H.-W.: Electromagnetic properties of the Beryllium-11 nucleus in Halo EFT. EPJ Web Conf. 3, 06002 (2010)

    Article  Google Scholar 

  7. Phillips D.R., Hammer H.-W.: Electric properties of the Beryllium-11 system in Halo EFT. Nucl. Phys. A865, 17 (2011)

    ADS  Google Scholar 

  8. Rupak G., Higa R.: Model-independent calculation of radiative neutron capture on Lithium-7. Phys. Rev. Lett. 106, 222501 (2011)

    Article  ADS  Google Scholar 

  9. Fernando L., Higa R., Rupak G.: Leading E1 and M1 contributions to radiative neutron capture on lithium-7. Eur. Phys. J. A 48, 24 (2012)

    Article  ADS  Google Scholar 

  10. Rupak G., Fernando L., Vaghani A.: Radiative neutron capture on carbon-14 in effective field theory. Phys. Rev. C 86, 044608 (2012)

    Article  ADS  Google Scholar 

  11. Acharya B., Phillips D.R.: 19C in halo EFT: effective-range parameters from Coulomb dissociation experiments. Nucl. Phys. A913, 103 (2013)

    Article  ADS  Google Scholar 

  12. Canham D.L., Hammer H.-W.: Universal properties and structure of halo nuclei. Eur. Phys. J. A 37, 367 (2008)

    Article  ADS  Google Scholar 

  13. Canham D.L., Hammer H.-W.: Range corrections for two-neutron halo nuclei in effective theory. Nucl. Phys. A836, 275 (2010)

    Article  ADS  Google Scholar 

  14. Rotureau J., van Kolck U.: Effective field theory and the Gamow shell model. Few Body Syst. 54, 725 (2013)

    Article  ADS  Google Scholar 

  15. Ji C., Elster Ch., Phillips D.R.: 6He nucleus in halo effective field theory. Phys. Rev. C 90, 044004 (2014)

    Article  ADS  Google Scholar 

  16. Lensky V., Birse M.C.: Coupled-channel effective field theory and proton- 7Li scattering. Eur. Phys. J. A 47, 142 (2011)

    Article  ADS  Google Scholar 

  17. Ryberg E., Forssén C., Hammer H.-W., Platter L.: Effective field theory for proton halo nuclei. Phys. Rev. C 89, 014325 (2014)

    Article  ADS  Google Scholar 

  18. Bertulani C.A., Gade A.: Nuclear astrophysics with radioactive beams. Phys. Rep. 485, 195 (2010)

    Article  ADS  Google Scholar 

  19. Trache L. et al.: Asymptotic normalization coefficients for 8 B 7Be + p from a study of 8 Li 7Li + n. Phys. Rev. C 67, 062801 (2003)

    Article  ADS  Google Scholar 

  20. Zhang X., Nollett K.M., Phillips D.R.: Combining ab initio calculations and low-energy effective field theory for halo nuclear systems: the case of \({{}^7{\rm Li}+n\to {}^8{\rm Li}+\gamma}\). Phys. Rev. C 89, 024613 (2014)

    Article  ADS  Google Scholar 

  21. Zhang X., Nollett K.M., Phillips D.R.: Combining ab initio calculations and low-energy effective field theory for halo nuclear systems: the case of \({{}^7{\rm Be}+p\to {}^8{\rm B}+\gamma}\). Phys. Rev. C 89, 051602 (2014)

    Article  ADS  Google Scholar 

  22. Kaplan D.B.: More effective field theory for non-relativistic scattering. Nucl. Phys. B494, 471 (1997)

    Article  ADS  Google Scholar 

  23. Koester L., Knopf K., Waschkowski W.: Neutron scattering length of lithium and boron and their isotopes. Z. Phys. A 312, 81 (1983)

    Article  ADS  Google Scholar 

  24. Angulo C. et al.: Experimental determination of the 7Be + p scattering lengths. Nucl. Phys. A 716, 211 (2003)

    Article  ADS  Google Scholar 

  25. Weinberg S.: Effective chiral lagrangians for nucleon-pion interactions and nuclear forces. Nucl. Phys. B363, 3 (1991)

    Article  ADS  Google Scholar 

  26. Kaplan D.B., Savage M.J., Wise M.B.: A new expansion for nucleon–nucleon interactions. Phys. Lett. B424, 390 (1998)

    Article  ADS  Google Scholar 

  27. Kaplan D.B., Savage M.J., Wise M.B.: Two-nucleon systems from effective field theory. Nucl. Phys. B534, 329 (1998)

    Article  ADS  Google Scholar 

  28. van Kolck U.: Effective field theory of short-range forces. Nucl. Phys. A645, 273 (1999)

    Article  ADS  Google Scholar 

  29. Tombrello T.: The capture of protons by 7Be. Nucl. Phys. 71, 459 (1965)

    Article  Google Scholar 

  30. Davids B., Typel S.: Electromagnetic dissociation of 8B and the astrophysical S factor for \({{}^7Be(p,\gamma){}^8{\rm B}}\). Phys. Rev. C 68, 045802 (2003)

    Article  ADS  Google Scholar 

  31. Huang J.T., Bertulani C.A., Guimaraes V.: Radiative capture of nucleons at astrophysical energies with single-particle states. At. Data Nucl. Data Tables 96, 824 (2010)

    Article  ADS  Google Scholar 

  32. Hammer H.W., Lee D.: Causality and universality in low-energy quantum scattering. Phys. Lett. B681, 500 (2009)

    Article  ADS  Google Scholar 

  33. Hammer H.W., Lee D.: Causality and the effective range expansion. Ann. Phys. 325, 2212 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. Tanihata I. et al.: Measurements of interaction cross sections and nuclear radii in the light p-shell region. Phys. Rev. Lett. 55, 2676 (1985)

    Article  ADS  Google Scholar 

  35. Imhof W.L. et al.: Cross sections for the \({{\rm Li}^7(n,\gamma){\rm Li}^8}\) reaction. Phys. Rev. 114, 1037 (1959)

    Article  ADS  Google Scholar 

  36. Nagai Y. et al.: \({{}^7{\rm Li}(n,\gamma)^8{\rm Li}}\) reaction and the S 17 factor at E c.m. > 500keV. Phys. Rev. C 71, 055803 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  37. Blackmon J.C. et al.: Measurement of \({{}^7{\rm Li}(n,\gamma)^8{\rm Li}}\) cross sections at E n  = 1.5−−−1340eV. Phys. Rev. C 54, 383 (1996)

    Article  ADS  Google Scholar 

  38. Lynn J.E., Jurney E.T., Raman S.: Direct and valence neutron capture by 7Li. Phys. Rev. C 44, 764 (1991)

    Article  ADS  Google Scholar 

  39. Izsak R. et al.: Determining the \({{}^7{\rm Li}(n,\gamma)}\) cross section via Coulomb dissociation of 8Li. Phys. Rev. C 88, 065808 (2013)

    Article  ADS  Google Scholar 

  40. Stone N.J.: Table of nuclear magnetic dipole and electric quadrupole moments. At. Data Nucl. Data Tables 96, 75 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Higa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higa, R. Capture Reactions with Halo Effective Field Theory. Few-Body Syst 56, 761–766 (2015). https://doi.org/10.1007/s00601-015-1004-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00601-015-1004-x

Keywords

Navigation