Skip to main content
Log in

Early-successional ectomycorrhizal fungi effectively support extracellular enzyme activities and seedling nitrogen accumulation in mature forests

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

After stand-replacing disturbance, regenerating conifer seedlings become colonized by different ectomycorrhizal fungi (EMF) than the locally adapted EMF communities present on seedlings in mature forests. We studied whether EMF species that colonized subalpine fir (Abies lasiocarpa) seedlings in clearcuts differed from those that colonized seedlings in adjacent mature forests with respect to mycorrhizoplane extracellular enzyme activities (EEAs) and N status of the seedlings. We tested two alternate hypotheses: (1) that EEAs would differ between the two EMF communities, with higher activities associated with forest-origin communities, and (2) that acclimation to soil environment was considerable enough that EEAs would be determined primarily by the soil type in which the ectomycorrhizas were growing. Naturally colonized fir seedlings were reciprocally transplanted between clearcuts and forests, carrying different EMF communities with them. EEAs were influenced more by destination environment than by EMF community. EEAs were as high in early-successional as in late-successional communities in both destination environments. Buds of clearcut-origin seedlings had the same or higher N contents as forest seedlings after a growing season in either environment. These results indicate that (i) symbiotic EMF and/or their associated microbial communities demonstrate substantial ability to acclimate to new field environments; (ii) the ability to produce organic matter-degrading enzymes is not a trait that necessarily distinguishes early- and late-successional EMF communities in symbiosis; (iii) early-successional EMF are as capable of supporting seedling N accumulation in forest soils as late-successional EMF; and (iv) disturbed ecosystems where early-successional EMF are present should have high resilience for organic matter degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agerer R (1987-2002) Colour atlas of ectomycorrhizae. Einhorn-Verlag Eduard Dietenberger, Schwäbisch Gmünd

  • Barker JS, Simard SW, Jones MD, Durall DM (2013) Ectomycorrhizal fungal community assembly on regenerating Douglas-fir after wildfire and clearcut harvesting. Oecologia 172:1179–1189

    Article  PubMed  Google Scholar 

  • Blaalid R, Davey ML, Kauserud H, Carlsen T, Halvorsen R, Hoiland K, Eidesen PB (2014) Arctic root-associated fungal community composition reflects environmental filtering. Mol Ecol 23:649–659

    Article  PubMed  Google Scholar 

  • Bödeker ITM, Nygren CMR, Taylor AFS, Olson A, Lindahl BD (2009) Class II peroxidase-encoding genes are present in a phylogenetically wide range of ectomycorrhizal fungi. ISME J 3:1387–1395

    Article  PubMed  Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York

    Book  Google Scholar 

  • Brzostek ER, Finzi AC (2011) Substrate supply, fine roots, and temperature control proteolytic enzyme activity in temperate forest soils. Ecology 92:892–902

    Article  PubMed  Google Scholar 

  • Buée M, Courty PE, Mignot D, Garbaye J (2007) Soil niche effect on species diversity and catabolic activities in an ectomycorrhizal fungal community. Soil Biol Biochem 39:1947–1955

    Article  Google Scholar 

  • Burke DJ, Smemo KA, Lopez-Gutierrez JC, Hewins CR (2012) Soil enzyme activity in an old-growth northern hardwood forest: interactions between soil environment, ectomycorrhizal fungi and plant distribution. Pedobiologia 55:357–364

    Article  CAS  Google Scholar 

  • Burke DJ, Weintraub MN, Hewins CR, Kalisz S (2011) Relationship between soil enzyme activities, nutrient cycling and soil fungal communities in a northern hardwood forest. Soil Biol Biochem 43:795–803

    Article  CAS  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemmensen KE, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339:1615–1618

    Article  CAS  PubMed  Google Scholar 

  • Colpaert JV, van Laere A, van Assche JA (1996) Carbon and nitrogen allocation in ectomycorrhizal and non-mycorrhizal Pinus sylvestris L seedlings. Tree Physiol 16:787–793

    Article  CAS  PubMed  Google Scholar 

  • Conn C, Dighton J (2000) Litter quality influences on decomposition, ectomycorrhizal community structure and mycorrhizal root surface acid phosphatase activity. Soil Biol Biochem 32:489–469

    Article  CAS  Google Scholar 

  • Coupé R, Stewart AC, Wikeem BM (1991) Engelmann spruce–subalpine fir zone. In: Meidinger D, Pojar J (eds) Ecosystems of British Columbia. Research branch. B.C. Ministry of Forests, Victoria, pp. 223–236

    Google Scholar 

  • Courty P-E, Munoz F, Selosse M-A, Duchemin M, Criquet S, Ziarelli F, Buée M, Plassard C, Taudière A, Garbaye J, Richard F (2016) Into the functional ecology of ectomycorrhizal communities: environmental filtering of enzymatic activities. J Ecol doi. doi:10.1111/1365-2745.12633

    Google Scholar 

  • Courty P-E, Pritsch K, Schloter M, Hartmann A, Garbaye J (2005) Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. New Phytol 167:309–319

    Article  CAS  PubMed  Google Scholar 

  • Deacon JW, Fleming LV (1992) Interactions of ectomycorrhizal fungi. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman and Hall, New York, pp. 249–300

    Google Scholar 

  • Finlay RD, Frostegård A, Sonnerfeldt AM (1992) Utilization of organic and inorganic nitrogen sources of ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl. ex Loud. New Phytol 120:105–115

    Article  Google Scholar 

  • Floudas D, Binder M, Riley R, Barry K, Blanchette RA, Henrissat B, Martínez AT, Otillar R, Spatafora JW, Yadavet JS et al (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719

    Article  CAS  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Godbold DL, Hoosbeek MR, Lukac M, Cotrufo MF, Janssens IA, Ceulemans R, Polle A, Velthorst EJ, Scarascia-Mugnozza G, De Angelis P, Miglietta F, Peressotti A (2006) Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 281:15–24

    Article  CAS  Google Scholar 

  • Goodman DM, Durall DM, Trofymow JA, Berch SM (1996) A manual of concise descriptions of North American ectomycorrhizae. Mycologue Publications, Victoria

    Google Scholar 

  • Hagerman SM, Jones MD, Bradfield GE, Gillespie M, Durall DM (1999) Effects of clear-cut logging on the diversity and persistence of ectomycorrhizae at a subalpine forest. Can J For Res 29:124–134

    Article  Google Scholar 

  • Hannam KD, Prescott CE (2003) Soluble organic nitrogen in forests and adjacent clearcuts in British Columbia, Canada. Can J For Res 33:1709–1718

    Article  CAS  Google Scholar 

  • Hope GD (2009) Clearcut harvesting effects on soil and creek inorganic nitrogen in high elevation forests of southern interior British Columbia. Can J Soil Sci 89:35–44

    Article  CAS  Google Scholar 

  • Jarvis SG, Woodward S, Taylor AFS (2015) Strong altitudinal partitioning in the distributions of ectomycorrhizal fungi along a short (300 m) elevation. New Phytol 206:1145–1155

    Article  CAS  PubMed  Google Scholar 

  • Jones MD, Durall DM, Cairney JWG (2003) Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol 157:399–422

    Article  Google Scholar 

  • Jones MD, Durall DM, Harniman SMK, Classen DC, Simard SW (1997) Ectomycorrhizal diversity of Betula papyrifera and Pseudotsuga menziesii seedlings grown in the greenhouse or in single-species and mixed plots in southern British Columbia. Can J For Res 27:1872–1889

    Article  Google Scholar 

  • Jones MD, Grenon F, Peat H, Fitzgerald M, Holt L, Philip LJ, Bradley R (2009) Differences in 15N uptake amongst spruce seedlings colonized by three pioneer ectomycorrhizal fungi in the field. Fungal Ecol 2:110–120

    Article  Google Scholar 

  • Jones MD, Phillips LA, Treu R, Ward V, Berch SM (2012) Functional responses of ectomycorrhizal fungal communities to long-term fertilization of lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) stands in Central British Columbia. Appl Soil Ecol 60:29–40

    Article  Google Scholar 

  • Jones MD, Twieg BD, Ward V, Barker J, Durall DM, Simard SW (2010) Functional complementarity of Douglas-fir ectomycorrhizas for extracellular enzyme activity after wildfire or clearcut logging. Funct Ecol 24:1139–1151

    Article  Google Scholar 

  • Jumpponen A, Jones KL (2009) Massively parallel 454-sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 184:438–448

    Article  CAS  PubMed  Google Scholar 

  • Kataja-aho S, Pennanen T, Lensu A, Haimi J (2012) Does stump removal affect early growth and mycorrhizal infection of spruce (Picea abies) seedlings in clear-cuts? Scand J Forest Res 27:746–753

    Article  Google Scholar 

  • Keller G (1996) Utilization of inorganic and organic nitrogen sources by high-subalpine ectomycorrhizal fungi of Pinus cembra in pure culture. Mycol Res 100:989–998

    Article  CAS  Google Scholar 

  • Kennedy PG, Bruns TD (2005) Priority effects determine the outcome of ectomycorrhizal competition between two Rhizopogon species colonizing Pinus muricata seedlings. New Phytol 166:631–638

    Article  PubMed  Google Scholar 

  • Klein T, Siegwolf RTW, Körner C (2016) Belowground carbon trade among tall trees in a temperate forest. Science 352:342–344

    Article  CAS  PubMed  Google Scholar 

  • Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canbäck B, Choi C, Cichocki N, Clum A et al (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47:410–415

    Article  CAS  PubMed  Google Scholar 

  • Kotroczó Z, Veres Z, Fekete I, Krakomperger Z, Tóth JA, Lajtha K, Tóthmérész B (2014) Soil enzyme activity in response to long-term organic matter manipulation. Soil Biol Biochem 70:237–243

    Article  Google Scholar 

  • Kranabetter JM (2004) Ectomycorrhizal community effects on hybrid spruce seedling growth and nutrition in clearcuts. Can J Bot 82:983–991

    Article  Google Scholar 

  • Kranabetter JM, Durall DM, MacKenzie WH (2009) Diversity and species distribution of ectomycorrhizal fungi along productivity gradients of a southern boreal forest. Mycorrhiza 19:99–111

    Article  CAS  PubMed  Google Scholar 

  • Kranabetter JM, Friesen J (2002) Ectomycorrhizal community structure on western hemlock (Tsuga heterophylla) seedlings transplanted from forests into openings. Can J Bot 80:861–868

    Article  Google Scholar 

  • Kranabetter JM, Hawkins B, Jones MD, Robbins S, Dyer T, Li T (2015a) Species turnover (β diversity) in ectomycorrhizal fungi linked to NH4 + uptake capacity. Mol Ecol 24:5992–6005

    Article  CAS  PubMed  Google Scholar 

  • Kranabetter JM, Stoehr M, O’Neill GA (2015b) Ectomycorrhizal fungal maladaptation and growth reductions associated with assisted migration of Douglas-fir. New Phytol 206:1135–1144

    Article  CAS  PubMed  Google Scholar 

  • Kranabetter JM, Wylie T (1998) Ectomycorrhizal community structure across forest openings on naturally regenerated western hemlock seedlings. Can J Bot 76:189–196

    Google Scholar 

  • Kummel M, Lostroh P (2011) Altering light availability to the plant host determined the identity of the dominant ectomycorrhizal fungal partners and mediated mycorrhizal effects on plant growth. Botany 89:439–450

    Article  Google Scholar 

  • Leberecht M, Dannenmann M, Gschwendtner S, Bilela S, Meier R, Simon J, Rennenberg H, Schloter M, Polle A (2015) Ectomycorrhizal communities on the roots of two beech (Fagus sylvatica) populations from contrasting climates differ in nitrogen acquisition in a common environment. Appl Environ Microbiol 81:5957–5967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeDuc SD, Lilleskov EA, Horton TR, Rothstein DE (2013) Ectomycorrhizal fungal succession coincides with shifts in organic nitrogen availability and canopy closure in post-wildfire jack pine forests. Oecologia 172:257–269

    Article  PubMed  Google Scholar 

  • Lilleskov EA, Fahey TJ, Horton TR, Lovett GM (2002) Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83:104–115

    Article  Google Scholar 

  • Lilleskov EA, Hobbie EA, Horton TR (2011) Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fungal Ecol 4:174–183

    Article  Google Scholar 

  • Lindahl BD, Tunlid A (2015) Ectomycorrhizal fungi - potential organic matter decomposers, yet not saprotrophs. New Phytol 205:1443–1447

    Article  CAS  PubMed  Google Scholar 

  • Logan M (2010) Biostatistical design and analysis using R. A practical guide. Wiley-Blackwell, Chichester

    Book  Google Scholar 

  • Mah K, Tackaberry LE, Egger KB, Massicotte HB (2001) The impacts of broadcast burning after clear-cutting on the diversity of ectomycorrhizal fungi associated with hybrid spruce seedlings in Central British Columbia. Can J For Res 31:224–235

    Article  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach

    Google Scholar 

  • Millard P, Grelet GA (2010) Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world. Tree Physiol 30:1083–1095

    Article  CAS  PubMed  Google Scholar 

  • Moeller HV, Peay KG, Fukami T (2014) Ectomycorrhizal fungal traits reflect environmental conditions along a coastal California edaphic gradient. FEMS Microbiol Ecol 87:797–806

    Article  CAS  PubMed  Google Scholar 

  • Mosca E, Montecchio L, Scattolin L, Garbaye J (2007) Enzymatic activities of three ectomycorrhizal types of Quercus robur L. in relation to tree decline and thinning. Soil Biol Biochem 39:2897–2904

    Article  CAS  Google Scholar 

  • Münzenberger B, Golldack J, Ullrich A, Schmincke B, Hüttl RF (2004) Abundance, diversity, and vitality of mycorrhizae of scots pine (Pinus sylvestris L.) in lignite recultivation sites. Mycorrhiza 14:193–202

    Article  PubMed  Google Scholar 

  • Nilsson RH, Veldre V, Hartmann M, Unterseher M, Amend A, Bergsten J, Kristiansson E, Ryberg M, Jumpponen A, Abarenkov K (2010) An open source software package for automated extraction of ITS1 and ITS2 from fungal ITS sequences for use in high-throughput community assays and molecular ecology. Fungal Ecol 3:284–287

    Article  Google Scholar 

  • Peay KG, Schubert MG, Nguyen NH, Bruns TD (2012) Measuring ectomycorrhizal fungal dispersal: macroecological patterns driven by microscopic propagules. Mol Ecol 21:4122–4136

    Article  PubMed  Google Scholar 

  • Pena R, Tejeddor J, Zeller B, Dannenmann M, Polle A (2013) Interspecific temporal and spatial differences in the acquisition of litter-derived nitrogen by ectomycorrhizal fungal assemblages. New Phytol 199:520–528

    Article  CAS  PubMed  Google Scholar 

  • Peršoh D (2015) Plant-associated fungal communities in the light of meta’omics. Fungal Divers 75:1–25

    Article  Google Scholar 

  • Phillips LA, Ward V, Jones MD (2014) Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests. ISME J 8:699–713

    Article  CAS  PubMed  Google Scholar 

  • Pickles BJ, Twieg BD, O’Neill GA, Mohn WW, Simard SW (2015) Local adaptation in migrated interior Douglas-fir seedlings is mediated by ectomycorrhizas and other soil factors. New Phytol 207:858–871

    Article  PubMed  Google Scholar 

  • Pritsch K, Raidl S, Marksteiner E, Blaschke H, Agerer R, Schloter M, Martmann A (2004) A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4-methylumbelliferone-labelled fluorogenic substrates in a microplate system. J Microbiol Meth 58:233–241

    Article  CAS  Google Scholar 

  • R Core Team (2013) R: a language and environment of statistical computing. R foundation for statistical computing. http://www.R-project.org/. Accessed 27 Jun 2014

  • Rincón A, Santamaria BP, Ocana L, Verdu M (2014) Structure and phylogenic diversity of post-fire ectomycorrhizal communities of maritime pine. Mycorrhiza 24:131–141

    Article  PubMed  Google Scholar 

  • Rineau F, Garbaye J (2009) Does forest liming impact the enzymatic profiles of ectomycorrhizal communities through specialized fungal symbionts? Mycorrhiza 19:493–500

    Article  CAS  PubMed  Google Scholar 

  • Rineau F, Stas J, Nguyen NH, Kuyper TW, Carleer R, Vangronsveld J, Colpaert JV, Kennedy PG (2016) Ectomycorrhizal fungal protein degradation ability predicted by soil organic nitrogen availability. Appl Environ Microbiol 82:1391–1400

    Article  CAS  PubMed Central  Google Scholar 

  • Root HT, McGee GG, Nyland RD (2007) Effects of two silvicultural regimes with large tree retention on epiphytic macrolichen communities in Adirondack northern hardwoods, New York, USA. Can J For Res 37:1854–1866

    Article  Google Scholar 

  • Simard SW, Jones MD, Durall DM (2003) Carbon and nutrient fluxes within and between mycorrhizal plants. In: Sanders IR, van der Heijden M (eds) Mycorrhizal ecology. Springer, Berlin, pp. 33–74

    Chapter  Google Scholar 

  • Smith JE, Molina R, Huso MMP, Larsen MJ (2000) Occurrence of Piloderma fallax in young, rotation-age, and old-growth stands of Douglas-fir (Pseudotsuga menziesii) in the Cascade Range of Oregon, U.S.A. Can J Bot 78:995–1001

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, Cambridge

    Google Scholar 

  • Spake R, Ezard THG, Martin PA, Newton AC, Doncaster CP (2015) A meta-analysis of functional group responses to forest recovery outside of the tropics. Conserv Biol 29:1695–1703

    Article  PubMed  PubMed Central  Google Scholar 

  • Talbot JM, Martin F, Kohler A, Henrissat B, Peay KG (2015) Functional guild classification predicts the enzymatic role of fungi in litter and soil biogeochemistry. Soil Biol Biochem 88:441–456

    Article  CAS  Google Scholar 

  • Taylor DL, Bruns TD (1999) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Mol Ecol 8:1837–1850

    Article  CAS  PubMed  Google Scholar 

  • Twieg BD, Durall DM, Simard SW (2007) Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol 176:437–447

    Article  PubMed  Google Scholar 

  • van Aarle IM, Plassard C (2010) Spatial distribution of phosphatase activity associated with ectomycorrhizal plants in related to soil type. Soil Biol Biochem 42:324–330

    Article  Google Scholar 

  • Walker JKM, Jones MD (2013) Little evidence for niche partitioning among ectomycorrhizal fungi on spruce seedlings planted in decayed wood versus mineral soil microsites. Oecologia 173:1499–1511

    Article  PubMed  Google Scholar 

  • Walker JKM, Ward V, Jones MD (2016) Ectomycorrhizal fungal exoenzyme activity differs on spruce seedlings planted in forests versus clearcuts. Trees–Struc Funct 30:497–508

    Article  CAS  Google Scholar 

  • Wallander H, Johansson U, Sterkenburg E, Durling MB, Lindahl BD (2010) Production of ectomycorrhizal mycelium peaks during canopy closure in Norway spruce forests. New Phytol 187:1124–1134

    Article  CAS  PubMed  Google Scholar 

  • Welc M, Frossard E, Egli S, Bünemann EK, Jansa J (2014) Rhizosphere fungal assemblages and soil enzymatic activities in a 110-years alpine chronosequence. Soil Biol Biochem 74:21–30

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp. 315–322

    Google Scholar 

Download references

Acknowledgments

This research was funded by a Natural Sciences and Engineering Research Council of Canada Discovery Grant to MJ. The authors are very grateful for technical and field assistance from Clive Dawson, Aaron Godin, Monika Gorzlak, Stéphane LeBihan, Logan Markaroff, Sheri Maxwell, Brian Pickles, Enav Shalev, Valerie Ward, Shayle Weibe, and Matthew Whiteside. Daniel Durall and John Klironomos provided helpful suggestions during the design of this study. Jason Pither provided statistical advice. The manuscript benefitted from the input of several anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie D. Jones.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 515 kb.)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicholson, B.A., Jones, M.D. Early-successional ectomycorrhizal fungi effectively support extracellular enzyme activities and seedling nitrogen accumulation in mature forests. Mycorrhiza 27, 247–260 (2017). https://doi.org/10.1007/s00572-016-0747-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-016-0747-7

Keywords

Navigation