Skip to main content

Advertisement

Log in

Little evidence for niche partitioning among ectomycorrhizal fungi on spruce seedlings planted in decayed wood versus mineral soil microsites

  • Community ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Ectomycorrhizal fungal (EMF) communities vary among microhabitats, supporting a dominant role for deterministic processes in EMF community assemblage. EMF communities also differ between forest and clearcut environments, responding to this disturbance in a directional manner over time by returning to the species composition of the original forest. Accordingly, we examined EMF community composition on roots of spruce seedlings planted in three different microhabitats in forest and clearcut plots: decayed wood, mineral soil adjacent to downed wood, or control mineral soil, to determine the effect of retained downed wood on EMF communities over the medium and long term. If downed and decayed wood provide refuge habitat distinct from that of mineral soil, we would expect EMF communities on seedlings in woody habitats in clearcuts to be similar to those on seedlings planted in the adjacent forest. As expected, we found EMF species richness to be higher in forests than clearcuts (P ≤ 0.01), even though soil nutrient status did not differ greatly between the two plot types (P ≥ 0.05). Communities on forest seedlings were dominated by Tylospora spp., whereas those in clearcuts were dominated by Amphinema byssoides and Thelephora terrestris. Surprisingly, while substrate conditions varied among microsites (P ≤ 0.03), especially between decayed wood and mineral soil, EMF communities were not distinctly different among microhabitats. Our data suggest that niche partitioning by substrate does not occur among EMF species on very young seedlings in high elevation spruce-fir forests. Further, dispersal limitations shape EMF community assembly in clearcuts in these forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agerer R (1987–2002) Colour atlas of ectomycorrhizae. Einhorn Eduard Dietenberger, Schwäbisch Gmünd

  • Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST—a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  PubMed  CAS  Google Scholar 

  • Anderson MJ (2005) PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance. University of Auckland, Department of Statistics, New Zealand

    Google Scholar 

  • Baier R, Ingenhaag J, Blaschke H, Göttlein A, Agerer R (2006) Vertical distribution of an ectomycorrhizal community in upper soil horizons of a young Norway spruce (Piceaabies [L.] Karst.) stand of the Bavarian limestone Alps. Mycorrhiza1 6:197–206

    Google Scholar 

  • Barker JS, Simard SW, Jones MD, Durall DM (2013) Ectomycorrhizal fungal community assembly on regenerating Douglas-fir after wildfire and clearcut harvesting. Oecologia. doi: 10.1007/s00442-012-2562-y

  • Beiler KJ, Durall DM, Simard SW, Maxwell SA, Kretzer AM (2010) Architecture of the wood-wide web: rhizopogon species genets link multiple Douglas-fir cohorts. New Phytol 185:543–553. doi:10.1111/j.1469-8137.2009.03069.x

    Article  PubMed  CAS  Google Scholar 

  • Berg Å, Ehnström B, Gustafsson L, Hallingbäck T, Jonsell M, Weslien J (1994) Threatened plant, animal, and fungus species in Swedish forests: distribution and habitat associations. Conserv Biol 8:718–731. doi:10.1046/j.1523-1739.1994.08030718.x

    Article  Google Scholar 

  • Blaalid R, Carlsen T, Kumar S, Halvorsen R, Ugland KI, Fontana G, Kauserud H (2012) Changes in the root-associated fungal communities along a primary succession gradient analysed by 454 pyrosequencing. Mol Ecol 21:1897–1908. doi:10.1111/j.1365-294X.2011.05214.x

    Article  PubMed  Google Scholar 

  • Brewer JS, Bertz CA, Cannon JB, Chesser JD, Maynard EE (2012) Do natural disturbances or the forestry practices that follow them convert forests to early- successional communities? Ecol Appl 22:442–458. doi:10.1890/11-0386.1

    Article  PubMed  Google Scholar 

  • Bruns TD (1995) Thoughts on the processes that maintain local species diversity of ectomycorrhizal fungi. Plant Soil 170:63–73. doi:10.1007/BF02183055

    Article  CAS  Google Scholar 

  • Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456. doi:10.1111/j.1469-8137.2009.03003.x

    Article  PubMed  Google Scholar 

  • Bunnell F, Houde I (2010) Down wood and biodiversity-implications to forest practices. Environ Rev 18:397–421. doi:10.1139/A10-019

    Article  Google Scholar 

  • Chase JM, Myers JA (2011) Disentangling the importance of ecological niches from stochastic processes across scales. Philos Trans R Soc Lond B 366:2351–2363. doi:10.1098/rstb.2011.0063

    Article  Google Scholar 

  • Christy EJ, Sollins P, Trappe JM (1982) First-year survival of Tsuga heterophylla without mycorrhizae and subsequent ectomycorrhizal development on decaying logs and mineral soil. Can J Bot 60:1601–1605. doi:10.1139/b82-206

    Article  Google Scholar 

  • Colwell RK (2009) EstimateS: Version 8.2. Statistical estimation of species richness and shared species from samples. http://purl.oclc.org/estimates

  • Craig VJ, Klenner W, Feller MC, Sullivan TP (2006) Relationships between deer mice and downed wood in managed forests of southern British Columbia. Can J For Res 36:2189–2203. doi:10.1139/x06-118

    Article  Google Scholar 

  • Deacon JW, Fleming LV (1992) Specificity phenomena in mycorrhizal symbiosis: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman & Hall, New York, pp 249–300

    Google Scholar 

  • Dickie IA, Reich PB (2005) Ectomycorrhizal fungal communities at forest edges. J Ecol 93:244–255. doi:10.1111/j.1365-2745.2005.00977.x

    Article  Google Scholar 

  • Dickie IA, Richardson SJ, Wiser SK (2009) Ectomycorrhizal fungal communities and soil chemistry in harvested and unharvested temperate Nothofagus rainforests. Can J For Res 39:1069–1079. doi:10.1139/X09-036

    Article  CAS  Google Scholar 

  • Ding Q, Liang Y, Legendre P, X-h He, Pei K-q Du, X-j Ma K-p (2011) Diversity and composition of ectomycorrhizal community on seedling roots: the role of host preference and soil origin. Mycorrhiza 12:669–680. doi:10.1007/s00572-011-0374-2

    Article  Google Scholar 

  • Druebert C, Lang C, Valtanen K, Polle A (2009) Beech carbon productivity as driver of ectomycorrhizal abundance and diversity. Plant Cell Env 32:992–1003. doi:10.1111/j.1365-3040.2009.01983.x

    Article  CAS  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Elliott JC, Smith JE, Cromack K Jr, Chen H, McKay D (2007) Chemistry and ectomycorrhizal communities of coarse wood in young and old-growth forests in the Cascade Range of Oregon. Can J For Res 37:2041–2051. doi:10.1139/X07-014

    Article  Google Scholar 

  • Flynn D, Newton AC, Ingleby K (1998) Ectomycorrhizal colonization of Sitka spruce (Picea sitchensis (Bong.) Carr) seedlings in a Scottish plantation forest. Mycorrhiza 7:313–317. doi:10.1007/s005720050198

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for Basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. doi:10.1111/j.1365-294X.1993.tb00005.x

    Article  PubMed  CAS  Google Scholar 

  • Gibson F, Deacon JW (1988) Experimental study of establishment of ectomycorrhizas in different regions of birch root systems. Trans Br Mycol Soc 91:239–251

    Article  Google Scholar 

  • Gibson F, Deacon JW (1990) Establishment of ectomycorrhizas in aseptic culture: effects of glucose, nitrogen and phosphorus in relation to successions. Mycol Res 94:166–172. doi:10.1016/S0953-7562(09)80608-4

    Article  Google Scholar 

  • Goodman DM, Trofymow JA (1998) Distribution of ectomycorrhizas in microhabitats in mature and old-growth stands of Douglas-fir on southeastern Vancouver Island. Soil Biol Biochem 30:2127–2138. doi:10.1016/S0038-0717(98)00094-7

    Article  CAS  Google Scholar 

  • Goodman DM, Durall DM, Trofymow JA, Berch SM (1996) A manual of concise descriptions of North American Ectomycorrhizae. Mycologue, Sydney, pp 3A1–3A5

    Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Hagerman SH, Durall DM (2004) Ectomycorrhizal colonization of greenhouse-grown Douglas-fir (Pseudotsuga menziesii) seedling by inoculum associated with the roots of refuge plants sampled from a Douglas-fir forest in the southern interior of British Columbia. Can J Bot 82:742–751. doi:10.1139/b04-047

    Article  Google Scholar 

  • Hagerman SH, Jones MD, Bradfield GE, Gillespie M, Durall DM (1999) Effects of clear- cut logging on the diversity and persistence of ectomycorrhizas at a subalpine forest. Can J For Res 29:124–134. doi:10.1139/x98-186

    Article  Google Scholar 

  • Hannam KD, Prescott CE (2003) Soluble organic nitrogen in forests and adjacent clearcuts in British Columbia, Canada. Can J For Res 33:1709–1718. doi:10.1139/x03-091

    Article  CAS  Google Scholar 

  • Harvey AE, Larsen MJ, Jurgensen MF (1979) Comparative distribution of ectomycorrhizae in soils of three western Montana forest habitat types. For Sci 25:350–358

    Google Scholar 

  • Hollstedt C, Vyse A. (1997) Sicamous Creek Silvicultural Systems Project: Workshop Proceedings April 24–25, 1996. Work Pap 24/1997. Res Br BC Min For, Victoria, B.C., Canada

  • Iwánski M, Rudawska M (2007) Ectomycorrhizal colonization of naturally regenerating Pinus sylvestris L. seedlings growing in micro-habitats in boreal forests. Mycorrhiza 17:461–467. doi:10.1007/s00572-007-0132-7

    Article  PubMed  Google Scholar 

  • Izzo A, Nguyen DT, Bruns TD (2006) Spatial structure and richness of ectomycorrhizal fungi colonizing bioassay seedlings from resistant propagules in a Sierra Nevada forest: comparisons using two hosts that exhibit different seedling establishment patterns. Mycologia 98:374–383. doi:10.3852/mycologia.98.3.374

    Article  PubMed  Google Scholar 

  • Jones MD, Hagerman SH, Gillespie M (2002) Ectomycorrhizal colonization and richness of previously colonized, containerized Picea engelmannii does not vary across clearcuts when planted in mechanically site-prepared mounds. Can J For Res 32:1425–1433. doi:10.1139/x02-069

    Article  Google Scholar 

  • Jones MD, Durall DM, Cairney JGW (2003) Ectomycorrhizal fungal communities in young stands regenerating after clearcut logging. New Phytol 157:399–422. doi:10.1046/j.1469-8137.2003.00698.x

    Article  Google Scholar 

  • Jones MD, Grenon F, Peat H, Fitzgerald M, Holt L, Philip LJ, Bradley R (2009) Differences in 15 N uptake among spruce seedlings colonized by three pioneer ectomycorrhizal fungi in the field. Fungal Ecol 2:110–120. doi:10.1016/j.funeco.2009.02.002

    Article  Google Scholar 

  • Jonsson L, Dahlberg A, Nilsson M-C, Kårén O, Zackrisson O (1999) Continuity of ectomycorrhizal fungi in self-regenerating boreal Pinus sylvestris forests studied by comparing mycobiont diversity on seedlings and mature trees. New Phytol 142:151–162. doi:10.1046/j.1469-8137.1999.00383.x

    Article  Google Scholar 

  • Jumpponen A (2003) Soil fungal community assembly in a primary successional glacier forefront ecosystem as inferred from rDNA sequence analyses. New Phytol 158:569–578. doi:10.1046/j.1469-8137.2003.00767.x

    Article  Google Scholar 

  • Jumpponen A, Jones KL (2009) Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 184:438–448. doi:10.1111/j.1469-8137.2009.02990.x

    Article  PubMed  CAS  Google Scholar 

  • Katoh K, Misawa K, Kuma K, Miyata T (2002) Mafft: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res 30:3059–3066. doi:10.1093/nar/gkf436

    Article  PubMed  CAS  Google Scholar 

  • Kennedy P, Higgins LM, Rogers RH, Weber MG (2011) Colonization-competition tradeoffs as a mechanism driving successional dynamics in ectomycorrhizal fungal communities. PLoS ONE 6:1–10. doi:10.1371/journal.pone.0025126

    Google Scholar 

  • Kernaghan G, Khasa D (2003) Mycorrhizal and root endophytic fungi of containerized Picea glauca seedlings assessed by DNA sequence analysis. Microb Ecol 45:128–136. doi:10.1007/s00248-002-1024-1

    Article  PubMed  CAS  Google Scholar 

  • Koide RT, Fernandez C, Petprakob K (2011) General principles in the community ecology of ectomycorrhizal fungi. Ann For Sci 68:45–55. doi:10.1007/s13595-010-0006-6

    Article  Google Scholar 

  • Kranabetter JM, Friesen J (2002) Ectomycorrhizal community structure on western hemlock (Tsuga heterophylla) seedlings transplanted from forests into openings. Can J Bot 80:861–868. doi:10.1139/b02-071

    Article  Google Scholar 

  • Laiho R, Prescott CE (2004) Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: a synthesis. Can J For Res 34:763–777. doi:10.1139/x03-241

    Article  CAS  Google Scholar 

  • Lekberg Y, Koide RT, Rohr JR, Aldrich-Wolfe L, Morton JB (2007) Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J Ecol 95:95–105. doi:10.1111/j.1365-2745.2006.01193.x

    Article  Google Scholar 

  • McCune B, Mefford MJ (1999) PC-Ord. Multivariate analysis of ecological data, Version 5.0. MJM Software Design, Gleneden Beach

  • McKinnon LM, Mitchell AK (2003) Photoprotection, not increased growth, characterizes the response of Engelmann spruce (Picea engelmannii) seedlings to high light, even when resources are plentiful. New Phytol 160:69–79. doi:10.1046/j.1469-8137.2003.00854.x

    Article  CAS  Google Scholar 

  • Molina R, Horton TR, Trappe JM, Marcot BG (2010) Addressing uncertainty: how to conserve and manage rare or little-known fungi. Fungal Ecol 4:134–146. doi:10.1016/j.funeco.2010.06.003

    Article  Google Scholar 

  • Nara K (2005) Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol 169:169–178. doi:10.1111/j.1469-8137.2005.01545.x

    Article  Google Scholar 

  • Nilsson RH, Bok G, Ryberg M, Kristiansson E, Hallenberg N (2009) A software pipeline for processing and identification of fungal ITS sequences. Source Code Biol Med 4:1. doi:10.1186/1751-0473-4-1

    Article  PubMed  Google Scholar 

  • Nilsson RH, Veldre V, Hartmann M, Unterseher M, Amend A, Bergsten J, Kristiansson E, Ryberg M, Jumpponen A, Abarenkov K (2010) An open source software package for automated extraction of ITS1 and ITS2 from fungal ITS sequences for use in high-throughput community assays and molecular ecology. Fungal Ecol 3:284–287. doi:10.1016/j.funeco.2010.05.002

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2012) vegan: community ecology package. R package version 2.1 http://R-Forge.R-project.org/projects/vegan/

  • Palfner G, Cassanova-Katny MA, Read DJ (2005) The mycorrhizal community in a forest chronosequence of Sitka spruce (Picea sitchensis (Bong. (Carr) in Northern England. Mycorrhiza 15:571–579. doi:10.1007/s00572-005-0364-3

    Article  PubMed  Google Scholar 

  • Parrent JL, Peay K, Arnold AE, Comas LH, Avis P, Tuininga A (2010) Moving from pattern to process in fungal symbioses: linking functional traits, community ecology and phylogenetics. New Phytol 185:882–886. doi:10.1111/j.1469-8137.2010.03190.x

    Article  PubMed  Google Scholar 

  • Peay KG, Garbelotto M, Bruns TD (2010) Evidence of dispersal limitation in soil microorganisms: isolation reduces species richness on mycorrhizal tree islands. Ecology 91:3631–3640. doi:10.1890/09-2237.1

    Article  PubMed  Google Scholar 

  • Preston CM, Trofymow JA, Nault JR (2012) Decomposition and change in N and organic composition of small-diameter Douglas-fir woody debris over 23 years. Can J For Res 42:1153–1167. doi:10.1139/x2012-076

    Article  CAS  Google Scholar 

  • Queloz V, Sieber TN, Holenrieder O, McDonald BA, Grünig CR (2011) No biogeographical pattern for a root-associated fungal species complex. Glob Ecol Biogeogr 20:160–169. doi:10.1111/j.1466-8238.2010.00589.x

    Article  Google Scholar 

  • R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/

  • Rudawska M, Leski T, Trocha LK, Gornowicz R (2006) Ectomycorrhizal status of Norway spruce seedlings from bare-root forest nurseries. For Ecol Manag 236:375–384. doi:10.1016/j.foreco.2006.09.066

    Article  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing MOTHUR: open-source, platform- independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi:10.1128/AEM.01541-09

    Article  PubMed  CAS  Google Scholar 

  • Shortle WC, Smith KT, Jellison J, Schilling JS (2012) Potential of decaying wood to restore root- available base cations in depleted forest soils. Can J For Res 42:1015–1024. doi:10.1139/x2012-056

    Article  CAS  Google Scholar 

  • Simard SW, Perry DA, Smith JE, Molina R (1997) Effects of soil trenching on occurrence of ectomycorrhizae on Pseudotsuga menziesii seedlings grown in mature forests of Betula papyrifera and Pseudotsuga menziesii. New Phytol 136:327–340. doi:10.1046/j.1469-8137.1997.00731.x

    Article  Google Scholar 

  • Smith JE, Molina R, Huso MMP, Larsen MJ (2000) Occurrence of Piloderma fallax in young, rotation-age, and old-growth stands of Douglas-fir (Pseudotsuga menziesii) in the Cascade Range of Oregon, U.S.A. Can J Bot 78:995–1001. doi:10.1139/b00-085

    Google Scholar 

  • Taylor DL, Bruns TD (1999) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Mol Ecol 8:1837–1850. doi:10.1046/j.1365-294x.1999.00773.x

    Article  PubMed  CAS  Google Scholar 

  • Tedersoo L, Kõljalg U, Hallenberg N, Larsson K-H (2003) Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytol 159:153–165. doi:10.1046/j.1469-8137.2003.00792.x

    Article  CAS  Google Scholar 

  • Tedersoo L, Suvi T, Jairus T, Kõljalg U (2008) Forest microsite effects on community composition of ectomycorrhizal fungi on seedling of Picea abies and Betula pendula. Environ Microbiol 10:1189–1201. doi:10.1111/j.1462-2920.2007.01535.x

    Article  PubMed  CAS  Google Scholar 

  • Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Bahram M, Bechem E, Chuyong G, Kõljalg U (2010) 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological bias. New Phytol 188:291–301. doi:10.1111/j.1469-8137.2010.03373.x

    Article  PubMed  CAS  Google Scholar 

  • Walker JKM, Ward V, Paterson C, Jones MD (2012) Coarse woody debris retention in subalpine clearcuts affects ectomycorrhizal root tip community structure within fifteen years of harvest. J Appl Soil Ecol 60:5–15. doi:10.1016/j.apsoil.2012.02.017

    Article  Google Scholar 

  • Wall A (2008) Effect of removal of logging residue on nutrient leach and nutrient pools in the soil after clearcutting in a Norway spruce stand. For Ecol Manag 3256:1372–1383

    Article  Google Scholar 

  • Wallander H, Johansson U, Sterkenburg E, Durling MB, Lindahl BD (2010) Production of ectomycorrhizal mycelium peaks during canopy closure in Norway spruce forests. New Phytol 187:1124–1134. doi:10.1111/j.1469-8137.2010.03324.x

    Article  PubMed  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

  • Wu BY, Nara K, Hogetsu T (2001) Can C-14 labeled photosynthetic products move between Pinus densiflora seedlings linked by ectomycorrhizal mycelia? New Phytol 149:137–146. doi:10.1046/j.1469-8137.2001.00010.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this project was provided by a Discovery Grant from the Natural Sciences and Engineering Research Council, and by the Forest Science Program of the British Columbia Forest Investment Account to M.J. J.W. acknowledges support from UBC Okanagan and the Province of BC for scholarships. We thank Alan Vyse for safe access to the field site, MaryAnn Olson and Fawn Ross for extensive fieldwork, and Valerie Ward for unsurpassed assistance in the field and laboratory. This manuscript was greatly improved with the help of constructive comments from two anonymous reviewers.

Conflict of interest

The authors declare that no financial conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer K. M. Walker.

Additional information

Communicated by Hakan Wallander.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2864 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, J.K.M., Jones, M.D. Little evidence for niche partitioning among ectomycorrhizal fungi on spruce seedlings planted in decayed wood versus mineral soil microsites. Oecologia 173, 1499–1511 (2013). https://doi.org/10.1007/s00442-013-2713-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-013-2713-9

Keywords

Navigation