Skip to main content

Advertisement

Log in

Ectomycorrhizae and tree seedling nitrogen nutrition in forest restoration

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

In natural environments, tree roots are almost always in intimate, symbiotic association with particular species of fungi through the formation of mycorrhizae. Most mycorrhizal fungi provide soil resources, particularly nitrogen (N), phosphorus and/or water to the tree, and can increase the abiotic and biotic stress resistance of their hosts. The fungi benefit by receiving fixed carbon from the tree. The association is of particular benefit on harsh or degraded sites. This review surveys recent literature on ectomycorrhizal (ECM) associations of temperate and boreal forest trees as it relates to N-nutrition and restoration of forests on sites where native mycorrhizal communities have been altered or depleted. Part I emphasizes the ECM fungal partners. Changes in ECM communities through primary and secondary succession are reviewed and related to the influence of N availability. The effect of N-related functional traits of ECM fungi on their distribution is discussed. Part II focuses on the ECM plant partners. The influence of ECM fungi on plant N uptake, and effects of N deposition and fertilization are presented. The benefit of ECM inoculation under different disturbance regimes and the benefit of greater ECM diversity are reviewed. Variations among and within tree and ECM fungal species in the forms of N taken up and utilized are highlighted. Conclusions include recommendations for including ECM fungi in forest restoration projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abuzinadah RA, Read DJ (1986a) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants I. Utilization of peptides and proteins by ectomycorrhizal fungi. New Phytol 103:481–493

    Article  CAS  Google Scholar 

  • Abuzinadah RA, Read DJ (1986b) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants III. Protein utilization by Betula, Picea and Pinus in mycorrhizal association with Hebeloma crustuliniforme. New Phytol 103:506–514

    Google Scholar 

  • Abuzinadah RA, Read DJ (1989) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants V. Nitrogen transfer in birch (Betula pendula) grown in association with mycorrhizal and non-mycorrhizal fungi. New Phytol 112:61–68

    Article  CAS  Google Scholar 

  • Abuzinadah RA, Finlay RD, Read DJ (1986) The role of proteins in the nitrogen nutrition of ectomycorrhizal plants II. Utilization of protein by mycorrhizal plants of Pinus contorta. New Phytol 103:495–506

    Article  CAS  Google Scholar 

  • Adriaensen K, Vangronsveld J, Colpaert JV (2006) Zinc-tolerant Suillus bovinus improves growth of Zn-exposed Pinus sylvestris seedlings. Mycorrhiza 16:553–558

    Article  CAS  PubMed  Google Scholar 

  • Agerer R (2001) Exploration types of ectomycorrhizae—a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114

    Article  Google Scholar 

  • Aggangan NS, Jones BJS (2012) Selection of ectomycorrhizal fungi and tree species for rehabilitation of Cu mine tailings in the Philippines. J Environ Manag 15:59–71

    Google Scholar 

  • Arnebrant K, Söderström B (1992) Effects of different fertilizer treatments on ectomycorrhizal colonization potential in two Scots pine forests in Sweden. For Ecol Manag 53:77–89

    Article  Google Scholar 

  • Avolio ML, Tuininga AR, Lewis JD, Marchese M (2009) Ectomycorrhizal responses to organic and inorganic nitrogen sources when associating with two host species. Mycol Res 113:897–907

    Article  CAS  PubMed  Google Scholar 

  • Bahr A, Ellström M, Akselsson C, Ekblad A (2013) Growth of ectomycorrhizal fungal mycelium along a Norway spruce forest nitrogen deposition gradient and its effect on nitrogen leakage. Soil Biol Biochem 59:38–48

    Article  CAS  Google Scholar 

  • Baker SC, Spies TA, Wardlaw TJ, Balmer J, Franklin JF, Jordan GJ (2013) The harvested side of edges: effect of retained forests on the re-establishment of biodiversity in adjacent harvested areas. For Ecol Manage 302:107–121

    Article  Google Scholar 

  • Barker J, Simard SW, Jones MD, Durall DM (2013) Ectomycorrhizal fungal community assembly on regenerating Douglas-fir after wildfire and clearcut harvesting. Oecologia 172:1179–1189

    Article  PubMed  Google Scholar 

  • Baum C, Hrynkiewicz K, Leinweber P, Meißner R (2006) Heavy-metal mobilization and uptake by mycorrhizal and nonmycorrhizal willows (Salix × dasyclados). J Plant Nutr Soil ScI 169:516–522

    Article  CAS  Google Scholar 

  • Baxter JW, Dighton J (2001) Ectomycorrhizal diversity alters growth and nutrient acquisition of grey birch (Betula populifolia) seedlings in host-symbiont culture conditions. New Phytol 152:139–149

    Article  Google Scholar 

  • Becquer A, Trap J, Irshad U, Ali MA, Plassard C (2014) From soil to plant, the journey of P through trophic relationships and ectomycorrhizal association. Front Plant Sci 5:548. doi:10.3389/fpls.2014.00548

    Article  PubMed Central  PubMed  Google Scholar 

  • Bellion M, Courbot M, Jacob C, Guinet F, Blaudez D, Chalot M (2007) Metal induction of a Paxillus involutus metallothionein and its heterologous expression in Hebeloma cylindrosporum. New Phytol 174:151–158

    Article  CAS  PubMed  Google Scholar 

  • Berch SM, Brockley RP, Batigelli JP, Hagerman S, Holl B (2006) Impacts of repeated fertilization on components of the soil biota under a young lodgepole pine stand in the interior of British Columbia. Can J For Res 36:1415–1426

    Article  CAS  Google Scholar 

  • Berch SM, Brockley RP, Batigelli J, Hagerman S (2009) Impacts of repeated fertilization fine roots, mycorrhizas, mesofauna, and soil chemistry under young interior spruce in central British Columbia. Can J For Res 39:889–896

    Article  CAS  Google Scholar 

  • Bingham MA, Simard SW (2013) Seedling genetics and life history outweigh mycorrhizal network potential to improve conifer regeneration under drought. For Ecol Manag 287:132–139

    Article  Google Scholar 

  • Blaudez D, Chalot M (2011) Characterization of the ER-located zinc transporter ZnT1 and identification of a vesicular zinc storage compartment in Hebeloma cylindrosporum. Fungal Genet Biol 48:496–503

    Article  CAS  PubMed  Google Scholar 

  • Boukcim H, Plassard C (2003) Juvenile nitrogen uptake capacities and root architecture of two open-pollinated families of Picea abies. Effects of nitrogen source and ectomycorrhizal symbiosis. J Plant Phys 160:1211–1218

    Article  CAS  Google Scholar 

  • Braun S, Thomas VFD, Quiring R, Flückiger W (2010) Does nitrogen deposition increase forest production? The role of phosphorus. Environ Pollut 158:2043–2052

    Article  CAS  PubMed  Google Scholar 

  • Brown SP, Jumpponen A (2014) Contrasting primary successional trajectories of fungi and bacteria in retreating glacier soils. Mol Ecol 23:481–497

    Article  PubMed  Google Scholar 

  • Bücking H, Liepold E, Ambilwade P (2012) The role of the mycorrhizal symbiosis in nutrient uptake of plants and the regulatory mechanisms underlying these transport processes. In: Dhal NK, Sahu SC (eds) Plant science. doi:10.5772/52570

  • Chalot M, Brun A (1998) Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiol Rev 22:21–44

    Article  CAS  PubMed  Google Scholar 

  • Chalot M, Plassard C (2011) Ectomycorrhiza and nitrogen provision to the host tree. In: Polacco JC, Todd CD (eds) Ecological aspects of nitrogen metabolism in plants. Wiley, New York, pp 69–94

    Chapter  Google Scholar 

  • Clemmensen KE, Sorensen PL, Michelsen A, Jonasson S, Ström L (2008) Site-dependent N uptake from N-form mistures by arctic plants, soil microbes and ectomycorrhizal fungi. Oecologia 155:771–783

    Article  PubMed  Google Scholar 

  • Corrêa A, Gurevitch J, Martins-Loução MA, Cruz C (2012) C allocation to the fungus is not a cost to the plant in ectomycorrhiza. Oikos 121:449–463

    Article  Google Scholar 

  • Courty PE, Pritsch K, Schloter M, Hartmann A, Garbaye J (2005) Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. New Phytol 167:309–319

    Article  CAS  PubMed  Google Scholar 

  • Courty P-E, Buée M, Diedhiou AG, Pascale F-K, Le Tacon F, Rineau F, Turpault M-P, Uroz S, Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem 42:679–698

    Article  CAS  Google Scholar 

  • Courty PE, Labbé J, Kohler A, Marçais B, Bastien C, Churin JL, Garbaye J, Le Tacon F (2011) Effect of poplar genotypes on mycorrhizal infection and secreted enzyme activities in mycorrhizal and non-mycorrhizal roots. J Exp Bot 62:249–260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cox F, Barsoum N, Lilleskov EA, Bidartondo MI (2010) Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients. Ecol Lett 13:1103–1113

    Article  PubMed  Google Scholar 

  • Davey CB (1990) Mycorrhizae and realistic nursery management. In: Rose R, Campbell SJ, Landis TD (eds) Target seedling symposium: proceedings, combined meeting of the Western Forest Nursery Associations. General Technical Report RM-200. Ft. Collins, CO. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, pp 68–77

  • Dickie IA, Reich PB (2005) Ectomycorrhizal fungal communities at forest edges. J Ecol 93:244–255

    Article  Google Scholar 

  • Dickie IA, Martínez-García LB, Koele N, Grelet G-A, Tylianakis JM, Peltzer DA, Richardson SJ (2013) Mycorrhizas and mychorrhizal fungal communities throughout ecosystem development. Plant Soil 367:11–39

    Article  CAS  Google Scholar 

  • Elliott S, Blakesley D, Hardwick K (2013) Restoring tropical forests: a practical guide. Kew Publications, London, p 368

  • Fernandez R, Bertrand A, Casares A, Garcia R, Gonzalez A, Tames RS (2008) Cadmium accumulation and its effect on the in vitro growth of woody fleabane and mycorrhized white birch. Environ Pollut 152:522–529

    Article  CAS  PubMed  Google Scholar 

  • Finlay RD, Ek H, Odham G, Söderström B (1988) Mycelial uptake, translocation and assimilation of nitrogen from 15N-labelled ammonium by Pinus sylvestris plants infected with four different ectomycorrhizal fungi. New Phytol 110:59–66

    Article  Google Scholar 

  • Finlay RD, Frostegard A, Sonnerfeldt A-M (1992) Utilization of organic and inorganic nitrogen sources by ectomycorrhizal fungi in pure culture and in symbiosis with Pinus contorta Dougl. ex Loud. New Phytol 120:105–115

    Article  Google Scholar 

  • Floudas D, Binder B, Riley R, Barry K et al (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719

    Article  CAS  PubMed  Google Scholar 

  • Franklin O, Näsholm T, Högberg P, Högberg MN (2014) Forests trapped in nitrogen limitation—an ecological market perspective on ectomycorrhizal symbiosis. New Phytol 203:657–666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fransson PMA, Taylor AFS, Finlay RD (2000) Effects of continuous optimal fertilization on belowground ectomycorrhizal community structure in a Norway spruce forest. Tree Physiol 20:599–606

    Article  PubMed  Google Scholar 

  • Garbaye J, Churin J-L (1997) Growth stimulation of young oak plantations inoculated with the ectomycorrhizal fungus Paxillus involutus with special reference to summer drought. For Ecol Manag 98:221–228

    Article  Google Scholar 

  • Gehring C, Flores-Rentería D, Sthultz CM, Leonard TM, Flores-Rentería L, Whipple AV, Whitham TG (2014) Plant genetics and interspecific competitive interactions determine ectomycorrhizal fungal community responses to climate change. Mol Ecol 23:1379–1391

    Article  PubMed  Google Scholar 

  • Gobert A, Plassard C (2002) Differential NO3 dependent patterns of NO3 uptake in Pinus pinaster, Rhizopogon roseolus and their ectomycorrhizal association. New Phytol 154:509–516

    Article  CAS  Google Scholar 

  • Guidot A, Verner M-C, Debaud J-C, Marmeisse R (2005) Intraspecific variation in use of different organic nitrogen sources by the ectomycorrhizal fungus Hebeloma cylindrosporum. Mycorrhiza 15:167–177

    Article  CAS  PubMed  Google Scholar 

  • Hacquard S, Tisserant E, Brun A, Legué V, Martin F, Kohler A (2013) Laser microdissection and microarray analysis of Tuber melanosporum ectomycorrhizas reveal functional heterogeneity between mantle and Hartig net compartments. Environ Microbiol 15:1853–1869

    Article  CAS  PubMed  Google Scholar 

  • Hagerman SM, Jones MD, Bradfield GE, Gillespie M, Sakakibara S (1999) Ectomycorrhizal colonization of Picea engelmannii × glauca seedlings planted across cut-blocks of different sizes. Can J For Res 29:1856–1870

    Article  Google Scholar 

  • Harris J (2009) Soil microbial communities and restoration ecology: facilitators or followers? Science 325:573–574

    Article  CAS  PubMed  Google Scholar 

  • Hawkins BJ (2007) Family variation in nutritional and growth traits in Douglas-fir seedlings. Tree Physiol 27:911–919

    Article  CAS  PubMed  Google Scholar 

  • Hibbett DS, Gilbert L-B, Donoghue MJ (2000) Evolutionary instability of ectomycorrhizal symbioses in basidiomycetes. Nature 407:506–508

    Article  CAS  PubMed  Google Scholar 

  • Hobbie EA (2006) Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies. Ecology 87:563–569

    Article  PubMed  Google Scholar 

  • Hobbie EA, Colpaert JV, White MW, Ouimette AP, Macko SA (2008) Nitrogen form, availability and mycorrhizal colonization affect biomass and nitrogen isotope patterns in Pinus sylvestris. Plant Soil 310:121–136

    Article  CAS  Google Scholar 

  • Hoeksema JD, Kummel M (2003) Ecological persistence of the plant–mycorrhizal mutualism: a hypothesis from species coexistence theory. Am Nat 162:S40–S50

    Article  PubMed  Google Scholar 

  • Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black box. Mol Ecol 10:1855–1871

    Article  CAS  PubMed  Google Scholar 

  • Horton BM, Glen M, Davidson NJ, Ratkowsky D, Close DC, Wardlaw TJ, Mohammed C (2013) Temperate eucalypt forest decline is linked to altered ectomycorrhizal communities mediated by soil chemistry. For Ecol Manag 302:329–337

    Article  Google Scholar 

  • Hrynkiewicz K, Baum C (2013) Selection of ectomycorrhizal willow genotype in phytoextraction of heavy metals. Environ Technol 34:225–230

    Article  CAS  PubMed  Google Scholar 

  • Inselsbacher E, Näsholm T (2012) The below-ground perspective of forest plants: soil provides mainly organic nitrogen for plants and mycorrhizal fungi. New Phytol 195:329–334

    Article  CAS  PubMed  Google Scholar 

  • Jarvis S, Woodward S, Alexander IJ, Taylor AFS (2013) Regional scale gradients of climate and nitrogen deposition drive variation in ectomycorrhizal fungal communities associated with native Scots pine. Glob Change Biol 19:1688–1696

    Article  CAS  Google Scholar 

  • Jentschke G, Goldbold DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109:107–116

    Article  CAS  Google Scholar 

  • Johansson EM, Fransson PMA, Finlay RD, van Hees PAW (2008) Quantitative analysis of root and ectomycorrhizal exudates as a response to Pb, Cd and As stress. Plant Soil 313:39–54

    Article  CAS  Google Scholar 

  • Johnson D, Martin F, Cairney JWG, Anderson IC (2012) The importance of individuals: intraspecific diversity of mycorrhizal plants and fungi in ecosystems. New Phytol 194:614–628

    Article  PubMed  Google Scholar 

  • Jones MD, Hutchinson TC (1986) The effect of mycorrhizal infection on the response of Betula papyrifera to nickel and copper. New Phytol 102:429–442

    Article  CAS  Google Scholar 

  • Jones MD, Hutchinson TC (1988a) The effects of nickel and copper on the axenic growth of ectomycorrhizal fungi. Can J Bot 66:119–124

    Article  Google Scholar 

  • Jones MD, Hutchinson TC (1988b) Nickel toxicity in mycorrhizal birch seedlings infected with Lactarius rufus or Scleroderma flavidum. I. Effects on growth, photosynthesis, respiration and transpiration. New Phytol 108:451–459

    Article  CAS  Google Scholar 

  • Jones DL, Kielland K (2002) Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils. Soil Biol Biochem 34:209–219

    Article  CAS  Google Scholar 

  • Jones MD, Durall DM, Tinker PB (1990) Phosphorus relationships and production of extramatrical hyphae by two types of willow ectomycorrhiza along a soil phosphorus gradient. New Phytol 115:259–267

    Article  CAS  Google Scholar 

  • Jones MD, Durall DM, Tinker PB (1998) A comparison of arbuscular and ectomycorrhizal Eucalyptus coccifera: growth response, phosphorus uptake efficiency and external hyphal production. New Phytol 140:125–134

    Article  Google Scholar 

  • Jones MD, Durall DM, Cairney JWG (2003) Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol 157:399–422

    Article  Google Scholar 

  • Jones MD, Twieg BD, Durall DM, Berch SM (2008) Location relative to a retention patch affects the ECM fungal community more than patch size in the first season after timber harvesting on Vancouver Island, British Columbia. For Ecol Manag 255:1342–1352

    Article  Google Scholar 

  • Jones MD, Grenon F, Peat H, Fitzgerald M, Holt L, Philip LJ, Bradley R (2009) Differences in 15N uptake amongst spruce seedlings colonized by three pioneer ectomycorrhizal fungi in the field. Fungal Ecol 2:110–120

    Article  Google Scholar 

  • Jones MD, Twieg BD, Ward V, Barker J, Durall DM, Simard SW (2010) Functional complementarity of Douglas-fir ectomycorrhizas for extracellular enzyme activity after wildfire or clearcut logging. Funct Ecol 24:1139–1151

    Article  Google Scholar 

  • Jones MD, Phillips LA, Treu R, Ward V, Berch S (2012) Functional responses of ectomycorrhizal fungal communities to long-term fertilization of lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) stands in central British Columbia. App Soil Ecol 60:29–40

    Article  Google Scholar 

  • Jonsson L, Nilsson M-C, Wardle DA, Zackrisson O (2001) Context dependent effects of ectomycorrhizal species richness on tree seedling productivity. Oikos 93:353–364

    Article  Google Scholar 

  • Jourand P, Hannibal L, Majorel C, Mengant S, Ducousso M, Lebrun M (2014) Ectomycorrhizal Pisolithus albus inoculation of Acacia spirorbis and Eucalyptus globulus grown in ultramafic topsoil enhances plant growth and mineral nutrition while limits metal uptake. J Plant Physiol 171:164–172

    Article  CAS  PubMed  Google Scholar 

  • Jumpponen A (2003) Soil fungal community assembly in a primary successional glacier forefront ecosystem as inferred from rDNA sequence analyses. New Phytol 158:569–578

    Article  Google Scholar 

  • Jumpponen A, Brown SP, Trappe JM, Cázares E, Strömmer R (2012) Twenty years of research on fungal–plant interactions on Lyman Glacier Forefront—lessons learned and questions yet unanswered. Fungal Ecol 5:430–442

    Article  Google Scholar 

  • Karst J, Jones M, Turkington R (2009) Ectomycorrhizal colonization and intraspecific variation in growth responses of lodgepole pine. Plant Ecol 200:161–165

    Article  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  CAS  PubMed  Google Scholar 

  • Kipfer T, Wohlgemuth T, Van Der Heijden MGA, Ghazoul J, Egli S (2012) Growth response of drought-stressed Pinus sylvestris seedlings to single- and multi-species inoculation with ectomycorrhizal fungi. PLoS One 7:e35275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kjøller R, Nilsson L-O, Hansen K, Schmidt IK, Vesterdal L, Gundersen P (2012) Dramatic changes in ectomycorrhizal community composition, root tip abundance and mycelial production along a stand-scale nitrogen deposition gradient. New Phytol 194:278–286

    Article  PubMed  CAS  Google Scholar 

  • Koide RT, Fernandez C, Petprakob K (2011) General principles in the community ecology of ectomycorrhizal fungi. Ann For Sci 68:45–55

    Article  Google Scholar 

  • Koide RT, Fernandez C, Malcolm G (2014) Determining place and process: functional traits of ectomycorrhizal fungi that affect both community structure and ecosystem function. New Phytol 201:433–439

    Article  PubMed  Google Scholar 

  • Korkama T, Pakkanen A, Pennanen T (2006) Ectomycorrhizal community structure varies among Norway spruce (Picea abies) clones. New Phytol 171:815–824

    Article  CAS  PubMed  Google Scholar 

  • Kranabetter JM (1999) The effect of refuge trees on a paper birch ectomycorrhiza community. Can J Bot 77:1523–1528

    Article  Google Scholar 

  • Kranabetter JM (2004) Ectomycorrhizal community effects on hybrid spruce seedling growth and nutrition in clearcuts. Can J Bot 82:983–991

    Article  Google Scholar 

  • Kranabetter JM (2014) Ectomycorrhizal fungi and the nitrogen economy of conifers—implications for genecology and climate change mitigation. Botany 92:417–423

    Article  Google Scholar 

  • Kranabetter JM, Durall DM, MacKenzie WH (2009a) Diversity and species distribution of ectomycorrhizal fungi along productivity gradients of a southern boreal forest. Mycorrhiza 19:99–111

    Article  CAS  PubMed  Google Scholar 

  • Kranabetter JM, Friesen J, Gamiet S, Kroeger P (2009b) Epigeous fruiting bodies of ectomycorrhizal fungi as indicators of soil fertility and associated nitrogen status of boreal forests. Mycorrhiza 19:535–548

    Article  CAS  PubMed  Google Scholar 

  • Kropp BR, Langlois C-G (1990) Ectomycorrhizae in reforestation. Can J For Res 20:438–451

    Article  Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103

    Article  PubMed  Google Scholar 

  • LeDuc SD, Lilleskov EA, Horton TR, Rothstein DE (2013) Ectomycorrhizal fungal succession coincides with shifts in organic nitrogen availability and canopy closure in post-wildfire jack pine forests. Oecologia 172:257–269

    Article  PubMed  Google Scholar 

  • Lehto T, Zwiazek JJ (2011) Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 2:71–90

    Article  Google Scholar 

  • LePage BA, Currah RS, Stockey RA, Rothwell GW (1997) Fossil ectomycorrhizae from the Middle Eocene. Am J Bot 84:410–412

    Article  CAS  PubMed  Google Scholar 

  • Leski T, Aučina A, Skridaila A, Pietras M, Piepšas E, Rudawska M (2010) Ectomycorrhizal community structure of different genotypes of Scots pine under forest nursery conditions. Mycorrhiza 20:473–481

    Article  PubMed  Google Scholar 

  • Lilleskov EA, Hobbie EA, Fahey TJ (2002) Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes. New Phytol 154:219–231

    Article  CAS  Google Scholar 

  • Lilleskov EA, Hobbie EA, Horton TR (2011) Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fungal Ecol 4:174–183

    Article  Google Scholar 

  • Luo Z-B, Wua C, Zhang C, Li H, Lipka U, Polle A (2014) The role of ectomycorrhizas in heavy metal stress tolerance of host plants. Environ Exp Bot 108:47–62

    Article  CAS  Google Scholar 

  • Luoma DL, Eberhart JL, Molina R, Stockdale CA (2006) The spatial influence of Psuedotsuga menziesii retention trees on ectomycorrhizal diversity. Can J For Res 36:2561–2573

    Article  Google Scholar 

  • Ma Y, He J, Ma C, Luo J, Li H, Liu T, Polle A, Peng C, Luo Z-B (2014) Ectomycorrhizas with Paxillus involutus enhance cadmium uptake and tolerance in Populus × canescens. Plant Cell Environ 37:627–642

    Article  CAS  Google Scholar 

  • Majorel C, Hannibal L, Soupe M-E, Carriconde F, Ducousso M, Lebrun M, Jourand P (2012) Tracking nickel-adaptive biomarkers in Pisolithus albus from New Caledonia using a transcriptomic approach. Mol Ecol 21:2208–2223

    Article  CAS  PubMed  Google Scholar 

  • Majorel C, Hannibal L, Ducousso M, Lebrun M, Jourand P (2014) Evidence of nickel (Ni) efflux in Ni-tolerant ectomycorrhizal Pisolithus albus isolated from ultramafic soil. Environ Microbiol Rep 6:510–518

    Article  CAS  PubMed  Google Scholar 

  • Meharg AA (2003) The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycol Res 107:1253–1265

    Article  CAS  PubMed  Google Scholar 

  • Menkis A, Bakys R, Lygis V, Vasaitis R (2011) Mycorrhization, establishment and growth of outplanted Picea abies seedlings produced under different cultivation systems. Silva Fenn 45:283–289

    Article  Google Scholar 

  • Millard P (1996) Ecophysiology of the internal cycling of nitrogen for tree growth. Z Pflanz Bodenkunde 159:1–10

    CAS  Google Scholar 

  • Miller BD, Hawkins BJ (2007) Ammonium and nitrate uptake, nitrogen productivity and biomass allocation in interior spruce families with contrasting growth rates and mineral nutrient preconditioning. Tree Physiol 27:901–909

    Article  CAS  PubMed  Google Scholar 

  • Miller RM, Jastrow JD (1992) The application of VA mycorrhizae to ecosystem restoration and reclamation. In: Allen M (ed) Mycorrhizal functioning: an integrative plant–fungal process. Chapman and Hall, London, pp 438–467

    Google Scholar 

  • Miller SL, McClean TM, Stanton NL, Williams SE (1998) Mycorrhization, physiognomy, and first-year survivability of conifer seedlings following natural fire in Grand Teton National Park. Can J For Res 28:115–122

    Article  Google Scholar 

  • Mrnka L, Kuchar M, Cieslarova Z, Matejka P, Szakova J, Tlustos P, Vosatka M (2012) Effects of endo- and ectomycorrhizal fungi on physiological parameters and heavy metals accumulation of two species from the family Salicaceae. Water Air Soil Pollut 223:399–410

    Article  CAS  Google Scholar 

  • Nara K, Nakaya H, Hogetsu T (2003) Ectomycorrhizal sporocarp succession and production during early primary succession on Mount Fuji. New Phytol 158:193–206

    Article  Google Scholar 

  • Näsholm T, Högberg P, Franklin O, Metcalfe D, Keel SG, Campbell C, Hurry V, Linder S, Högberg MN (2013) Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytol 198:214–221

    Article  PubMed  CAS  Google Scholar 

  • Nygren CMR, Eberhardt U, Karlsson M, Parrent JL, Lindahl BD, Taylor AFS (2008) Growth on nitrate and occurrence of nitrate reductase encoding genes in a phylogenetically diverse range of ectomycorrhizal fungi. New Phytol 180:875–889

    Article  CAS  PubMed  Google Scholar 

  • O’Hanlon R (2012) Below-ground ectomycorrhizal communities: the effect of small scale spatial and short term temporal variation. Symbiosis 57:57–71

    Article  Google Scholar 

  • Onwuchekwa NE, Zwiazek JJ, Quoreshi A, Khasa DP (2014) Growth of mycorrhizal jack pine (Pinus banksiana) and white spruce (Picea glauca) seedlings planted in oil sands reclaimed areas. Mycorrhiza. doi:10.1007/s00572-014-0555-x

    PubMed  Google Scholar 

  • Outerbridge RA, Trofymow JA (2009) Forest management and maintenance of ectomycorrhizae: a case study of green tree retention in south-coastal British Columbia. BC J Ecosyst Manag 10:59–80

    Google Scholar 

  • Peay KG, Garbelotto M, Bruns TD (2010) Evidence of dispersal limitation in soil microorganisms: isolation reduces species richness on mycorrhizal tree islands. Ecology 91:3631–3640

    Article  PubMed  Google Scholar 

  • Peay KG, Kennedy PG, Bruns TD (2011) Rethinking ectomycorrhizal succession: are root density and hyphal exploration types drivers of spatial and temporal zonation? Fungal Ecol 4:233–240

    Article  Google Scholar 

  • Pena R, Offermann C, Simon J, Naumann PS, Geßler A, Holst J, Mayer H, Kögel-Knabner I, Rennenberg H, Polle A (2010) Girdling affects ectomycorrhizal diversity and reveals functional differences of EM community composition in a mature beech forest (Fagus sylvatica). Appl Environ Microbiol 76:1831–1841

    Article  CAS  Google Scholar 

  • Perry DA, Margolis H, Choquette C, Molina R, Trappe JM (1989) Ectomycorrhizal mediation of competition between coniferous tree species. New Phytol 112:501–511

    Article  Google Scholar 

  • Piñeiro J, Maestre FT, Bartolomé L, Valdecantos A (2013) Ecotechnology as a tool for restoring degraded drylands: a meta-analysis of field experiments. Ecol Eng 61:133–144

    Article  Google Scholar 

  • Plassard C, Bonafox B, Touraine B (2000) Differential effects of mineral and organic N sources, and of ectomycorrhizal infection by Hebeloma cylindrosporum, on growth and N utilization in Pinus pinaster. Plant Cell Environ 23:1195–1205

    Article  Google Scholar 

  • Plassard C, Guérin-Laguette A, Véry A-A, Casarin V, Thibaud J-B (2002) Local measurements of nitrate and potassium fluxes along roots of maritime pine. Effects of ectomycorrhizal symbiosis. Plant Cell Environ 25:75–84

    Article  Google Scholar 

  • Quoreshi AM, Ahamad I, Malloch D, Hellebust JA (1995) Nitrogen metabolism in the ectomycorrhizal fungus Hebeloma crustuliniforme. New Phytol 131:263–271

    Article  CAS  Google Scholar 

  • Quoreshi AM, Kernaghan GA, Hunt G (2009) Mycorrhizal fungi in Canadian forest nurseries and field performance of inoculated seedlings. In: Khasa D, Piché Y, Coughlan AP (eds) Advances in mycorrhizal science and technology. NRC Press, Ottawa, ON, pp 115–128

    Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    Article  CAS  PubMed  Google Scholar 

  • Ramesh G, Podila GK, Gay G, Marmeisse R, Reddy MS (2009) Different patterns of regulation for the copper and cadmium metallothioneins of the ectomycorrhizal fungus Hebeloma cylindrosporum. Appl Environ Microbiol 75:2266–2274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rangel-Castro JI, Danell E, Taylor AFS (2002) Use of different nitrogen sources by the edible ectomycorrhizal mushroom Cantharellus cibarius. Mycorrhiza 12:131–137

    Article  CAS  PubMed  Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391

    Article  Google Scholar 

  • Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243–1263

    Article  CAS  Google Scholar 

  • Rennenberg H, Dannenmann M, Gessler A, Kreuzwieser J, Simon J, Papen H (2009) Nitrogen balance in forest soils: nutritional limitation of plants under climate change stresses. Plant Biol 11:4–23

    Article  CAS  PubMed  Google Scholar 

  • Rinaldi AC, Comandini O, Kuyper TW (2008) Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Divers 33:1–45

    Google Scholar 

  • Rinćon A, de Felipe MR, Fernández-Pascual M (2007) Inoculation of Pinus halepensis Mill. with selected ectomycorrhizal fungi improves seedling establishment 2 years after planting in a degraded gypsum soil. Mycorrhiza 18:23–32

    Article  PubMed  Google Scholar 

  • Rousseau JVD, Sylvia DM, Fox AJ (1994) Contribution of ectomycorrhiza to the potential nutrient-absorbing surface of pine. New Phytol 128:639–644

    Article  Google Scholar 

  • Ruytinx J, Hoai N, Van Hees M, Op De Beeck M, Vangronsveld J, Carleer R, Colpaert JV, Adriaensen K (2013) Zinc export results in adaptive zinc tolerance in the ectomycorrhizal basidiomycete Suillus bovinus. Metallomics 5:1225–1233

    Article  CAS  PubMed  Google Scholar 

  • Scheromm P, Plassard C, Salsac L (1990) Effect of nitrate and ammonium nutrition on the metabolism of the ectomycorrhizal basidiomycete, Hebeloma cylindrosporum Romagn. New Phytol 114:227–234

    Article  CAS  Google Scholar 

  • Sebastiana M, Pereira VT, Alcântara A, Pais MS, Silva AB (2013) Ectomycorrhizal inoculation with Pisolithus tinctorius increases the performance of Quercus suber L. (cork oak) nursery and field seedlings. New For 44:937–949

    Article  Google Scholar 

  • Selosse M-A, Jacquot D, Bouchard D, Martin F, Le Tacon F (1998) Temporal persistence and spatial distribution of an American inoculant strain of the ectomycorrhizal basidiomycete Laccaria bicolor in a French forest. Mol Ecol 7:561–573

    Article  CAS  Google Scholar 

  • Simard SW (2009) Response diversity of ectomycorrhizas in forest succession following disturbance. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas—functional processes and ecological impact. Springer, Berlin, pp 187–205

    Chapter  Google Scholar 

  • Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP (2012) Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev 26:39–60

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, Amsterdam

    Google Scholar 

  • Soudzilovskaia NA, Douma JC, Akhmetzhanova AA, van Bodegom PM, Cornwell WK, Moens EJ, Treseder KK, Tibbett M, Wang Y-P, Cornelissen JHC (2015) Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry. Glob Ecol Biogeogr 24:371–382

    Article  Google Scholar 

  • Sousa NR, Franco AR, Oliveira RS, Castro PML (2014a) Reclamation of an abandoned burned forest using ectomycorrhizal inoculated Quercus rubra. For Ecol Manage 320:50–55

  • Sousa NR, Ramos MA, Marques APGC, Castro PML (2014b) A genotype dependent-response to cadmium contamination in soil is displayed by Pinus pinaster in symbiosis with different mycorrhizal fungi. Appl Soil Ecol 76:7–13

  • Tagu D, Faivre Rampant P, Lapeyrie F, Frey-Klett P, Vion P, Villar M (2001) Variation in the ability to form ectomycorrhizas in the F1 progeny of an interspecific poplar (Populus spp.) cross. Mycorrhiza 10:237–240

    Article  CAS  Google Scholar 

  • Talbot JM, Treseder KK (2010) Controls over mycorrhizal uptake of organic nitrogen. Pedobiologia 53:169–179

    Article  CAS  Google Scholar 

  • Talbot JM, Bruns TD, Smith DP, Branco S, Glassman SI, Erlandson S, Vilgalys R, Peay KG (2013) Independent roles of ectomycorrhizal and saprotrophic communities in soil organic matter decomposition. Soil Biol Biochem 57:282–291

    Article  CAS  Google Scholar 

  • Taylor AFS, Martin F, Read DJ (2000) Fungal diversity in ectomycorrhizal communities of Norway spruce [Picea abies (L.) Karst.] and beech (Fagus sylvatica L.) along north-south transects in Europe. In: Schulze E-D (ed) Carbon and nitrogen cycling in European forest ecosystems (Ecological studies), vol 142. Springer, Berlin, pp 343–365

    Chapter  Google Scholar 

  • Taylor AFS, Gebauer G, Read DJ (2004) Uptake of nitrogen and carbon from double-labelled (15N and 13C) glycine by mycorrhizal pine seedlings. New Phytol 164:383–388

    Article  CAS  Google Scholar 

  • Tedersoo L, Bahram M, Toots M, Diédhiou AG, Henkel TW, Kjøller R, Morris MH, Nara K, Nouhra E, Peay KG, Põlme S, Ryberg M, Smith ME, Kõljalg U (2012) Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol Ecol 21:4160–4170

    Article  PubMed  Google Scholar 

  • Teste FP, Simard SW, Durall DM (2009) Role of mycorrhizal networks and tree proximity in ectomycorrhizal colonization of planted seedlings. Fungal Ecol 2:21–30

    Article  Google Scholar 

  • Teste FP, Lieffers VJ, Strelkov SE (2012) Ectomycorrhizal community responses to intensive forest management: thinning alters impacts of fertilization. Plant Soil 360:333–347

    Article  CAS  Google Scholar 

  • Toljander JF, Eberhardt U, Toljander YK, Paul LR, Taylor AFS (2006) Species composition of an ectomycorrhizal fungal community along a local nutrient gradient in a boreal forest. New Phytol 170:873–884

    Article  CAS  PubMed  Google Scholar 

  • Trappe JM (1977) Selection of fungi for ectomycorrhizal inoculation in nurseries. Ann Rev Phytopathol 15:203–222

    Article  Google Scholar 

  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355

    Article  Google Scholar 

  • Trowbridge J, Jumpponen A (2004) Fungal colonization of shrub willow roots at the forefront of a receding glacier. Mycorrhiza 14:283–293

    Article  PubMed  Google Scholar 

  • Trudell SA, Edmonds RL (2004) Macrofungus communities correlate with moisture and nitrogen abundance in two old-growth conifer forests, Olympic National Park, Washington, USA. Can J Bot 82:781–800

    Article  CAS  Google Scholar 

  • Turgeman T, Asher JB, Roth-Bejerano N, Kagan-Zur V, Kapulnik Y, Sitrit Y (2011) Mycorrhizal association between the desert truffle Terfezia boudieri and Helianthemum sessiliflorum alters plant physiology and fitness to arid conditions. Mycorrhiza 21:623–630

    Article  CAS  PubMed  Google Scholar 

  • Turnbull MH, Goodall R, Stewart GR (1995) The impact of mycorrhizal colonization upon nitrogen source utilization and metabolism in seedlings of Eucalyptus grandis Hill ex Maiden and Eucalyptus maculata Hook. Plant Cell Environ 18:1386–1394

    Article  CAS  Google Scholar 

  • Twieg BC, Durall DM, Simard SW (2007) Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol 176:437–447

    Article  PubMed  Google Scholar 

  • Van Der Heijden MGA, Horton TR (2009) Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol 97:1139–1150

    Article  Google Scholar 

  • Velmala SM, Rajala T, Haapanen M, Taylor AFS, Pennanen T (2013) Genetic host-tree effects on the ectomycorrhizal community and root characteristics of Norway spruce. Mycorrhiza 23:21–33

    Article  CAS  PubMed  Google Scholar 

  • Velmala SM, Rajala T, Heinonsalo J, Taylor AFS, Pennanen T (2014) Profiling functions of ectomycorrhizal diversity and root structuring in seedlings of Norway spruce (Picea abies) with fast- and slow-growing phenotypes. New Phytol 201:610–622

    Article  CAS  PubMed  Google Scholar 

  • Veneault-Fourrey C, Martin F (2013) 10 new insights into ectomycorrhizal symbiosis evolution and function. In: Kempken F (ed) Agricultural applications. The mycota XI, 2nd edn. Springer, Berlin

    Google Scholar 

  • Visser S (1995) Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytol 129:389–401

    Article  Google Scholar 

  • Walker JKM, Cohen H, Higgins LM, Kennedy PG (2014) Testing the link between community structure and function for ectomycorrhizal fungi involved in a global tripartite symbiosis. New Phytol 202:287–296

    Article  CAS  PubMed  Google Scholar 

  • Wallander H, Johansson U, Sterkenburg E, Durling MB, Lindahl BD (2010) Production of ectomycorrhizal mycelium peaks during canopy closure in Norway spruce forests. New Phytol 187:1124–1134

    Article  CAS  PubMed  Google Scholar 

  • Wallenda T, Read DJ (1999) Kinetics of amino acid uptake by ectomycorrhizal roots. Plant Cell Environ 22:179–187

    Article  CAS  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Whiteside MD, Treseder KK, Atsatt PR (2009) The brighter side of soils: quantum dots track organic nitrogen through fungi and plants. Ecology 90:100–108

    Article  PubMed  Google Scholar 

  • Wiensczyk A, Gamiet S, Durall D, Jones M, Simard S (2002) Ectomycorrhizae and forestry in British Columbia: a summary of current research and conservation strategies. BC J Ecosyst Manag [online] 2:6. http://www.forrex.org/jem/2002/vol2/no1/art6.pdf

  • Wilkinson A, Solan M, Taylor AFS, Alexander IJ, Johnson D (2010) Intraspecific diversity regulates fungal productivity and respiration. PLoS One 5:e12604

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wright SHA, Berch SM, Berbee ML (2009) The effect of fertilization on the below-ground diversity and community composition of ectomycorrhizal fungi associated with western hemlock (Tsuga heterophylla). Mycorrhiza 19:267–276

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Hawkins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hawkins, B.J., Jones, M.D. & Kranabetter, J.M. Ectomycorrhizae and tree seedling nitrogen nutrition in forest restoration. New Forests 46, 747–771 (2015). https://doi.org/10.1007/s11056-015-9488-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-015-9488-2

Keywords

Navigation