Skip to main content
Log in

Design and optimization of a novel magnetically-actuated micromanipulator

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The ability of external magnetic fields to precisely control micromanipulators has received a great deal of attention from researchers in recent years due to its off-board power source. Researchers have proposed a number of designs for magnetically-actuated micromanipulators for various applications. However, in most of the proposed magnetically-actuated micromanipulators, the manipulator workspace area is small relative to the manipulator volume, and the ratio of the generated magnetic force to manipulator weight is low. In this paper, we introduce design and optimization procedures for a portable magnetically-actuated micromanipulator. The proposed micromanipulator has many potential applications, such as medical applications, pick and place operations, micro-assembly, and micro-machining processes. The proposed micromanipulator has two main subsystems: a magnetic actuator and an electromagnetic end-effector that is connected to the magnetic actuator by a needle. In this paper, we focus on the magnetic actuation concept of the proposed micromanipulator system. We present the optimal configuration that will maximize the micromanipulator actuation force, and a closed form solution for micromanipulator actuation force. We also present the force measurement experimental setup and results of finite element methods (FEM) analysis to validate the developed model. The results show an agreement between the model, the experiment, and the FEM results. The error difference between the FEM, experimental, and model data is approximately 0.05 N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Afshar S, Khamesee MB, Khajepour A (2013) Optimal configuration for electromagnets and coils in magnetic actuators. Magn IEEE Trans 49(4):1372–1381

    Article  Google Scholar 

  • Andriollo M, Martinelli G, Tortella A (2015) Optimization of an electrodynamic linear actuator for biometric applications. IEEE Trans Magn 51(8):1–6

    Article  Google Scholar 

  • Badr BM, Ali WG (2011) Applications of piezoelectric materials. Adv Mater Res 189:3612–3620

    Article  Google Scholar 

  • de Vries AHB, Krenn BE, van Driel R, Kanger JS (2005) Micro magnetic tweezers for nanomanipulation inside live cells. Biophys J 88(3):2137–2144

    Article  Google Scholar 

  • Dkhil M, Bolopion A, Regnier S, Gauthier M (2014) Modeling and experiments of high speed magnetic micromanipulation at the air/liquid interface. In: Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference, pp 4649–4655

  • Furlani EP (1993a) A formula for the levitation force between magnetic disks. Magn IEEE Trans 29(6):4165–4169

    Article  Google Scholar 

  • Furlani EP (1993b) Formulas for the force and torque of axial couplings. IEEE Trans Magn 29(5):2295–2301

    Article  Google Scholar 

  • Guo S, Pan Q, Khamesee MB (2008) Development of a novel type of microrobot for biomedical application. Microsyst Technol 14(3):307–314

    Article  Google Scholar 

  • Hosu BG, Jakab K, Bánki P, Tóth FI, Forgacs G (2003) Magnetic tweezers for intracellular applications. Rev Sci Instrum 74(9):4158–4163

    Article  Google Scholar 

  • Ikuta K, Makita S, Arimoto S (1991) Non-contact magnetic gear for micro transmission mechanism. In: Micro Electro Mechanical Systems, 1991, MEMS’91, Proceedings. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, pp 125–130

  • Khamesee MB, Shameli E (2005) Regulation technique for a large gap magnetic field for 3D non-contact manipulation. Mechatronics 15(9):1073–1087

    Article  Google Scholar 

  • Khamesee MB, Kato N, Nomura Y, Nakamura T (2002) Design and control of a microrobotic system using magnetic levitation. Mechatron IEEE/ASME Trans 7(1):1–14

    Article  Google Scholar 

  • Kummer MP, Abbott JJ, Kratochvil BE, Borer R, Sengul A, Nelson BJ (2010) OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. Robot IEEE Trans 26(6):1006–1017

    Article  Google Scholar 

  • Li M, Rouf VT, Thompson MJ, Horsley DA (2012) Three-axis Lorentz-force magnetic sensor for electronic compass applications. Microelectromech Syst J 21(4):1002–1010

    Article  Google Scholar 

  • Liu C, Stakenborg T, Peeters S, Lagae L (2009) Cell manipulation with magnetic particles toward microfluidic cytometry. J Appl Phys 105(10):102014

    Article  Google Scholar 

  • Mehrtash M, Khamesee MB (2010) Optimal motion control of magnetically levitated microrobot. In: Automation Science and Engineering (CASE), 2010 IEEE Conference, pp 521–526

  • Mehrtash M, Tsuda N, Khamesee MB (2011) Bilateral macro–micro teleoperation using magnetic levitation. Mechatron IEEE/ASME Trans 16(3):459–469

    Article  Google Scholar 

  • Mehrtash M, Khamesee MB, Tsuda N, Chang JY (2012a) Motion control of a magnetically levitated microrobot using magnetic flux measurement. Microsyst Technol 18(9–10):1417–1424

    Article  Google Scholar 

  • Mehrtash M, Khamesee MB, Tarao S, Tsuda N, Chang JY (2012b) Human-assisted virtual reality for a magnetic-haptic micromanipulation platform. Microsyst Technol 18(9–10):1407–1415

    Article  Google Scholar 

  • Mehrtash M, Zhang X, Khamesee MB (2015) Bilateral magnetic micromanipulation using off-board force sensor. Mechatron IEEE/ASME Trans 20(6):3223–3231

    Article  Google Scholar 

  • Nagaraj HS (1988) Investigation of magnetic fields and forces arising in open-circuit-type magnetic bearings. Tribol Trans 31(2):192–201

    Article  Google Scholar 

  • Nam J, Yeon T, Jang G (2014) Development of a linear vibration motor with fast response time for mobile phones. Microsyst Technol 20(8–9):1505–1510

    Article  Google Scholar 

  • Niu F, Ma W, Chu HK, Ji H, Yang J, Sun D (2015) An electromagnetic system for magnetic microbead’s manipulation. In: Mechatronics and Automation (ICMA), 2015 IEEE International Conference, pp 1005–1010

  • Okyay A, Khamesee MB, Erkorkmaz K (2015) Design and optimization of a voice coil actuator for precision motion applications. IEEE Trans Magn 51(6):1–10

    Article  Google Scholar 

  • Pandian SR, Hayakawa Y, Kanazawa Y, Kamoyama Y, Kawamura S (1997) Practical design of a sliding mode controller for pneumatic actuators. J Dyn Syst Meas Control 119(4):666–674

    Article  MATH  Google Scholar 

  • Ravaud R, Lemarquand G, Babic S, Lemarquand V, Akyel C (2010) Cylindrical magnets and coils: fields, forces, and inductances. Magn IEEE Trans 46(9):3585–3590

    Article  Google Scholar 

  • Robertson W, Cazzolato B, Zander A (2011) A simplified force equation for coaxial cylindrical magnets and thin coils. Magn IEEE Trans 47(8):2045–2049

    Article  Google Scholar 

  • Robertson W, Cazzolato B, Zander A (2012) Axial force between a thick coil and a cylindrical permanent magnet: optimizing the geometry of an electromagnetic actuator. Magn IEEE Trans 48(9):2479–2487

    Article  Google Scholar 

  • Seo DG, Han W, Cho YH (2015) A compact electromagnetic micro-actuator using the meander springs partially exposed to magnetic field. Microsyst Technol 21(6):1233–1239

    Article  Google Scholar 

  • Syahputra HP, Yang HM, Chung BM, Ko TJ (2012) Dual-stage feed drive for precision positioning on milling machine. In: Precision Assembly Technologies and Systems. Springer, Berlin, pp 81–88

  • Tarao S, Mehrtash M,Tsuda N, Khamesee MB (2011) Motion simulator for a multi-degree-of-freedom magnetically levitated robot. In: System Integration (SII), 2011 IEEE/SICE International Symposium, pp 869–874

  • Testa JF, CC Camuso (1998) Magnetic tool and object holder. U.S. Patent 5,760,668, issued June 2, 1998

  • Wang QM, Zhang Q, Xu B, Liu R, Cross LE (1999) Nonlinear piezoelectric behavior of ceramic bending mode actuators under strong electric fields. J Appl Phys 86(6):3352–3360

    Article  Google Scholar 

  • Wang DH, Yang Q, Dong HM (2013) A monolithic compliant piezoelectric-driven microgripper: design, modeling, and testing. Mechatron IEEE/ASME Trans 18(1):138–147

    Article  Google Scholar 

  • Weise K, Carlstedt M, Ziolkowski M, Brauer H, Toepfer H (2015) Lorentz force on permanent magnet rings by moving electrical conductors. IEEE Trans Magn 51(12):1–11

    Article  Google Scholar 

  • Xiao X, Li Y, Xiao S (2016) Development of a novel large stroke 2-DOF micromanipulator for micro/nano manipulation. Microsyst Technol. doi:10.1007/s00542-016-2991-3

    Google Scholar 

  • Zhang X, Mehrtash M, Khamesee MB (2016) Dual-axial motion control of a magnetic levitation system using hall-effect sensors. IEEE/ASME Trans Mechatron 21(2):1129–1139

    Article  Google Scholar 

  • Zheng L, Chen L, Huang H, Li X, Zhang L (2016) An overview of magnetic micro-robot systems for biomedical applications. Microsyst Technol 22(10):2371–2387. doi:10.1007/s00542-016-2948-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Behrad Khamesee.

Appendix

Appendix

1.1 The shell method in (Robertson et al. 2012)

The axial magnetic force Fm between a cylindrical magnet and electromagnetic coil in Fig. 6 can be found using the shell method as following:

$$F_{m} = \frac{1}{{N_{r} }}\,\sum\limits_{{n_{r} = 1}}^{{N_{r} }} {F_{s} \left( {R_{m} ,r(n_{r} ),l_{m} ,l_{c} ,z + \frac{{l_{m} + l_{c} }}{2}} \right),}$$
(21)

where:

$$r(n_{r} ) = R_{ci} + \frac{{n_{r} + 1}}{{N_{r} + 1}}(R_{co} - R_{ci} ),$$
(21.a)
$$F_{s} \left( {R_{m} ,r,l_{m} ,l_{c} ,z + \frac{{l_{m} + l_{c} }}{2}} \right) = \frac{{J_{1} J_{2} }}{{2M_{0} }}\sum\limits_{{e_{1} = 1}}^{{e_{1} = 2}} {\sum\limits_{{e_{2} = 3}}^{{e_{2} = 4}} {e_{1} e_{2} m_{1} m_{2} m_{3} F_{x} } } ,$$
(21.b)
$$J_{2} = \frac{{\mu_{0} N_{z} I}}{{l_{c} }},$$
(21.c)
$${\text{J}}_{ 1} = {\text{B}}_{\text{r}} ,$$
(21.d)
$$F_{x} = K(m_{4} ) - \frac{1}{{m_{2} }}E(m_{4} ) + \left[ {\frac{{m_{1}^{2} }}{{m_{3}^{2} }} - 1} \right]\prod {\left( {\frac{{m_{4} }}{{1 - m_{2} }}\left| {m_{4} } \right.} \right)} ,$$
(21.e)
$$m_{1} = z + \frac{{l_{m} + l_{c} }}{2} - \frac{1}{2}e_{1} l_{m} + \frac{1}{2}e_{1} l_{c} ,$$
(21.f)
$$m_{2} = \frac{{(R_{m} - r)^{2} }}{{m_{1} }} + 1,$$
(21.g)
$$m_{3} = \sqrt {(R_{m} + r)^{2} + m_{1}^{2} } ,$$
(21.h)
$$m_{4} = \frac{{4R_{m} r}}{{m_{3} }}.$$
(21.i)

The function Π(n|m) is the complete elliptic integral of the third kind with parameter m.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Mashagbeh, M., Al-dulaimi, T. & Khamesee, M.B. Design and optimization of a novel magnetically-actuated micromanipulator. Microsyst Technol 23, 3589–3600 (2017). https://doi.org/10.1007/s00542-016-3177-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-3177-8

Keywords

Navigation