Skip to main content
Log in

Replication quality of micro structures in injection moulded thin wall parts using rapid tooling moulds

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Injection moulding of micro structured polymer parts is often limited due to the replication quality of the structured surfaces. To enhance the replication quality process parameters, e.g., pressure, temperature or injection velocity, are adapted. Here, the mould temperature is the most important factor. This paper investigates the influence of the mould temperature on the replication of micro structured surfaces using amorphous and semi-crystalline polymers. Using rapid tooling moulds and a dynamic tempering system allows mould temperatures about the solidification temperatures during injection and a sufficient cooling for save ejection of the part. The results reveal that for amorphous polymers the mould temperature should be above the glass transition temperature for high replication quality. For semi-crystalline polymers the high cooling velocity seems to inhibit the crystallization process and this leads to a sufficiently low viscosity to achieve high replication quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Attia UM, Alcock JR (2009) An evaluation of process-parameter and part-geometry effects on the quality of filling in micro-injection moulding. Microsyst Technol 15:1861–1872. doi:10.1007/s00542-009-0923-1

    Article  Google Scholar 

  • Attia UM, Marson S, Alcock JR (2009) Micro-injection moulding of polymer microfluidic devices. Microfluid Nanofluid 7:1–28. doi:10.1007/s10404-009-0421-x

    Article  Google Scholar 

  • Bekesi JJ, Kaakkunen JJ, Michaeli W, Klaiber F, Schoengart M, Ihlemann J, Simon P (2010) Fast fabrication of super-hydrophobic surfaces on polypropylene by replication of short-pulse laser structured molds. Appl Phys Mat Sci Proc 99:691–695. doi:10.1007/s00339-010-5719-8

    Article  Google Scholar 

  • Chen SC, Lin CY, Chang JA, Minh PS (2013) Gas-assisted heating technology for high aspect ratio microstructure injection molding. Adv Mech Eng 2013. doi:10.1155/2013/282906

    Google Scholar 

  • Drummer D, Gruber K, Meister S (2011) Alternating temperature technology controls parts properties. Kunststoffe Int 101:25–27

    Google Scholar 

  • Drummer D, Ehrenstein GW, Hopmann C, Vetter K, Meister S, Fischer T, Piotter V, Prokop J (2012) Innovative process technologies for manufacturing thermoplastic micro parts—analysis and comparative assessment. J Plast Technol 8:439–467

    Google Scholar 

  • Eder G, Janeschitz-Kriegl H (1997) Crystallization. In: Cahn RW, Haasen P, Kramer EJ (eds) Materials science and technology:a comprehensive treatment. Wiley, Newyork, p 270

    Google Scholar 

  • Giboz J, Copponnex T, Mélé P (2007) Microinjection molding of thermoplastic polymers: a review. J Micromech Microeng 17:96–109. doi:10.1088/0960-1317/17/6/R02

    Article  Google Scholar 

  • Giessauf J, Pillwein G, Steinbichler G (2008) Variotherm temperature control is fit for production. Kunststoffe Int 98:57–62

    Google Scholar 

  • Gornik C (2004) Injection moulding of parts with microstructured surfaces for medical applications. Macromol Symposia 217:365–374. doi:10.1002/masy.200451332

    Article  Google Scholar 

  • Hoffmann S (2003) Calculations of crystallisation in thermoplastics mouldings. Ph.D. thesis, RWTH, Aachen

  • Janeschitz-Kriegl H, Ratajski E (2005) Kinetics of polymer crystallization under processing conditions: transformation of dormant nuclei by the action of flow. Polymer 46:3856–3870

    Article  Google Scholar 

  • Jungmeier A (2010) Struktur und eigenschaften spritzgegossener, thermoplastischer mikroformteile. Ph.D. thesis, University Erlangen

  • Karl VH (1979) Über die druckabhängigkeit der viskoelastischen und physikalisch-chemischen eigenschaften von polymeren. Angew Makromol Chem 79:11–19. doi:10.1002/apmc.1979.050790102

    Article  Google Scholar 

  • Kayano Y, Zouta K, Takahagi S, Ito H (2011) Replication properties and structure of PC in micromolding with heat insulator mold using zirconia ceramic. Int Polym Proc 26:304–312. doi:10.3139/217.2440

    Article  Google Scholar 

  • Kim MS, Kim SM (2014) Filling behavior of polymer melt in micro injection molding for v-grooves pattern. J Korean Soc Manuf Technol Eng 23:291–298

    Google Scholar 

  • Lurz A, Kuehnert I, Schmachtenberg E (2008) Influences on the properties of small and thin-walled injection molded parts—Part 2: importance of the thermal conductivity of the mold material. J Plast Technol 4:1–18

    Google Scholar 

  • Martyn MT, Whiteside BR, Coates PD, Allen P, Greenway G, Hornsby P (2004) Aspects of micromoulding polymers for medical applications. SPE Proceedings ANTEC, Chicago, pp 3698–3702

  • Meister S, Drummer D (2013a) Influence of mold temperature on mold filling behavior and part properties in micro injection molding. Int Polym Proc 28:550–557. doi:10.3139/217.2804

    Article  Google Scholar 

  • Meister S, Drummer D (2013b) Investigation on the achievable flow length in injection moulding of polymeric materials with dynamic mould tempering. Sci World J. doi:10.1155/2013/845916

    Google Scholar 

  • Moneke M (2001) Die kristallisation von verstärkten thermoplasten während der schnellen abkühlung und unter druck. Ph.D. thesis, University Darmstadt

  • Nguyen-Chung T, Löser C, Jüttner G, Obadal M, Pham T, Gehde M (2011) Morphology analysis of injection molded micro parts. J Plast Technol 7:86–114

    Google Scholar 

  • Rudolph N (2009) Druckverfestigung amorpher thermoplaste. Ph.D. thesis, University Erlangen-Nuernberg

  • Rudolph N, Kuehnert I, Schmachtenberg E, Ehrenstein GW (2009) Pressure solidification of amorphous thermoplastics. Polym Eng Sci 49:154–161. doi:10.1002/pen.21234

    Article  Google Scholar 

  • Rudolph N, Osswald TA, Ehrenstein GW (2011) Influence of pressure on volume, temperature and crystallization of thermoplastics during polymer processing. Int Polym Proc 26:239–248. doi:10.3139/217.2417

    Article  Google Scholar 

  • Schmiederer D, Schmachtenberg E (2006) Einflüsse auf die eigenschaften kleiner und dünnwandiger spritzgussteile. J Plast Technol 2:1–21

    Google Scholar 

  • Sha B, Dimov S, Griffiths C, Packianather MS (2007) Investigation of micro-injection moulding: factors affecting the replication quality. J Mat Proc Technol 183:284–296. doi:10.1016/j.jmatprotec.2006.10.019

    Article  Google Scholar 

  • Stern C, Frick AR, Weickert G, Michler GH, Henning S (2005) Processing, morphology and mechanical properties of liquid pool polypropylene with different molecular weights. Macromol Mat Eng 290:621–635. doi:10.1002/mame.200500081

    Article  Google Scholar 

  • Tom AM, Layser DS, Coulter JP (2006) Mechanical property determination of micro injection molded tensile test specimens. SPE Proceedings ANTEC, Charlotte, pp 2541–2545

  • Tosello G, Gava A, Hansen HN, Lucchetta G (2010) Study of process parameters effect on the filling phase of micro-injection moulding using weld lines as flow markers. J Adv Manuf Technol 47:81–97. doi:10.1007/s00170-009-2100-1

    Article  Google Scholar 

  • Walter T, Schinköthe W, Ehrfeld W, Schaumburg C, Weber L (1999) Injection moulding of microstructures with inductive mould heating. Proceedings 16, Stuttgarter Kunststoff-Kolloquium, Stuttgart, pp 1–10

  • Wuebken G (1974) Einfluss der verarbeitungsbedingungen auf die innere struktur thermoplastischer spritzgussteile unter besonderer berücksichtigung der abkühlverhältnisse. Ph.D. thesis, RWTH, Aachen

  • Xie L, Niesel T, Leester-Schaedel M, Ziegmann G, Buettgenbach S (2013) A novel approach to realize the local precise variotherm process in micro injection molding. Microsyst Technol 19:1017–1023. doi:10.1007/s00542-012-1692-9

    Article  Google Scholar 

  • Yokoi H, Han X, Takahashi T, Kim WK (2006) Effects of molding conditions on transcription molding of microscale prism patterns using ultra-high-speed injection molding. Polym Eng Sci 46:1140–1146. doi:10.1002/pen.20519

    Article  Google Scholar 

  • Zhan KF, Lu Z (2008) Analysis of morphology and performance of PP microstructures manufactured by micro injection molding. Microsyst Technol 14:209–214. doi:10.1007/s00542-007-0412-3

    Article  Google Scholar 

  • Zhao J, Mayes RH, Chen G, Chan PS, Xiong ZJ (2003) Polymer micromould design and micromoulding process. Plast Rubber Compos 32:240–247. doi:10.1179/146580103225002614

    Article  Google Scholar 

  • Zhu P, Tung J, Phillips A, Edward G (2006) Morphological development of oriented isotactic polypropylene in the presence of a nucleating agent. Macromolecules 39:1821–1831. doi:10.1021/ma052375g

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Bavarian Research Foundation for funding the work. We also extend our gratitude to our industrial partners Werkzeugbau Hofmann GmbH, Oechsler AG, Single Temperiertechnik GmbH, hotec GmbH, Arburg GmbH & Co. KG, Sabic Europe and Bayer MaterialScience AG for providing equipment and material. They further thank Mrs. Pia Trawiel and Mrs. Birgit Kaiser for supporting the measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Meister.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meister, S., Seefried, A. & Drummer, D. Replication quality of micro structures in injection moulded thin wall parts using rapid tooling moulds. Microsyst Technol 22, 687–698 (2016). https://doi.org/10.1007/s00542-015-2415-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2415-9

Keywords

Navigation