Skip to main content
Log in

Mesoproterozoic biogenic thrombolites from the North China platform

International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Thrombolites are abundant in the subtidal dolostones of the Mesoproterozoic Wumishan Formation (ca 1.50–1.45 Ga) in the North China platform. Three major components are identified within the thrombolites: irregular mesoclots, micritic matrix and spar-filled voids. The mesoclot generally comprises a relatively organic-rich micritic core and a microsparitic outer layer that consists of fibrous aragonite (pseudocrystals) with less organic matter. In the core of mesoclots, abundant fossilized organic remnants, such as putative coccoidal and filamentous bacteria and mucus- to film-like extracellular polymeric substance (EPS), are closely associated with organominerals including nanoglobules and submicron-scale polyhedrons. In exceptionally well-preserved mesoclots, their outer layers commonly contain micropores displaying as bacterial molds and filamentous bacteria fossils. The matrix of mesoclots consists mainly of micropeloids (20–30 μm in diameter) and minor terrigenous detritus. Some mesoclots have denticulate edges and their matrix shows growth laminations that envelope the outlines of mesoclots. These features indicate that the mesoclots are primary and they were mineralized earlier than the surrounding matrix. The mineralization of mesoclots may have proceeded in two stages: (1) organomineralization of the cores through replacement of organic matter by minute organominerals resulting from anaerobic degradation of bacteria and EPS and (2) inorganic precipitation of the outer layers fostered by an increase in carbonate alkalinity in micro-environment due to organic matter decomposition. The thrombolites from the Mesoproterozoic Wumishan Formation may have formed through complex interactions between microbes and environments and represent the earliest known Precambrian biogenic thrombolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aitken JD (1967) Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. J Sediment Res 37:1163–1178

    Google Scholar 

  • Aloisi G, Gloter A, Wallmann K, Guyot F, Zuddas P (2006) Nucleation of calcium carbonate on bacterial nanoglobules. Geology 34:1017–1020

    Article  Google Scholar 

  • Bartley JK, Kah LC (2004) Marine carbon reservoir, Corg-Ccarb coupling, and the evolution of the Proterozoic carbon cycle. Geology 32:129–132

    Article  Google Scholar 

  • Benzerara K, Menguy N, Lopez-Garcia P, Yoon TH, Kaz¢mierczak J, Tyliszczak T, Guyot F, Brown GE Jr (2006) Nanoscale detection of organic signatures in carbonate microbialites. Proc Natl Acad Sci USA 103:9440–9445

    Article  Google Scholar 

  • Benzerara K, Meibom A, Gautier Q, Kazmierczak J, Stolarski J, Menguy N, Brown GE Jr (2010) Nanotextures of aragonite in stromatolites from the quasi-marine Satonda crater lake, Indonesia. In: Pedley HM, Rogerson M (eds) Tufas and speleothems: unravelling the microbial and physical controls, vol 336. Geological Society, Special Publications, London, pp 211–224

  • Bontognali TRR, Vasconcelos C, Warthmann RJ, Dupraz C, Bernasconi SM, McKenzie JA (2008) Microbes produce nanobacteria-like structures, avoiding cell entombment. Geology 36:663–666

    Article  Google Scholar 

  • Burne RV, Moore LS (1987) Microbialites: organosedimentary deposits of benthic microbial communities. Palaios 2:241–254

    Article  Google Scholar 

  • Dupraz C, Visscher PT, Baumgartner LK, Reid RP (2004) Microbe-mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51:745–765

    Article  Google Scholar 

  • Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162

    Article  Google Scholar 

  • Ezaki Y, Liu JB, Adachi N (2012) Lower Triassic stromatolites in Luodian County, Guizhou Province, South China: evidence for the protracted devastation of the marine environments. Geobiology 10:48–59. doi:10.1111/j.1472-4669.2011.00309.x

    Article  Google Scholar 

  • Feldmann M, McKenzie JA (1998) Stromatolite–thrombolite associations in a modern environment, Lee Stocking Island, Bahamas. Palaios 13:201–212

    Article  Google Scholar 

  • Gao LZ, Zhang CH, Shi XY, Zhou HR, Wang ZQ (2007) Zircon SHRIMP U-Pb dating of the tuff bed in the Xiamaling Formation of the Qingbaikouan System in North China. Geological Bulletin of China 26:249–255 (In Chinese with English abstract)

    Google Scholar 

  • Gao LZ, Zhang CH, Shi XY, Song B, Wang ZQ, Liu YM (2008a) Mesoproterozoic age for Xiamaling Formation in North China plate indicated by zircon SHRIMP dating. Chin Sci Bull 53:2665–2671. doi:10.1007/s11434-008-0340-3

    Article  Google Scholar 

  • Gao LZ, Zhang CH, Yin CY, Shi XY, Wang ZQ, Liu YM, Liu PJ, Tang F, Song B (2008b) SHRIMP zircon ages: basis for refining the chronostratigraphic classification of the Meso- and Neoproterozoic strata in North China old land. Acta Geoscientica Sinica 29:366–376 (In Chinese with English abstract)

    Google Scholar 

  • Gao LZ, Zhang CH, Liu PJ, Ding XZ, Wang ZQ, Zhang YJ (2009) Recognition of Meso- and Neoproterozoic stratigraphic framework in North and South China. Acta Geoscientica Sinica 30:433–446 (In Chinese with English abstract)

    Google Scholar 

  • Gao LZ, Ding XZ, Gao Q, Zhang CH (2010) New Geological time scale of Late Precambrian in China and geochronology. Geol China 37:1014–1020 (In Chinese with English abstract)

    Google Scholar 

  • Garrett P (1970) Phanerozoic stromatolite: noncompetitive ecologic restriction by grazing and burrowing animals. Science 169:171–173

    Article  Google Scholar 

  • Grotzinger JP, James NP (2000) Precambrian carbonates: evolution of understanding. In: Grotzinger JP, James NP (eds) Carbonate sedimentation and diagenesis in the evolving Precambrian world, vol 67. SEPM, Special Publication, Tulsa, Oklahoma, pp 3–20

  • Grotzinger JP, Knoll AH (1995) Anomalous carbonate precipitates: is the Precambrian the key to the Permian? Palaios 10:578–596

    Article  Google Scholar 

  • Harwood CL, Sumner DY (2011) Microbialites of the Neoproterozoic Beck Spring Dolomite, Southern California. Sedimentology 58:1648–1673

    Article  Google Scholar 

  • Hofmann HJ (1973) Stromatolite characteristics and utility. Earth Sci Rev 9:339–373

    Article  Google Scholar 

  • Jahnert RJ, Collins LB (2012) Characteristics, distribution and morphogenesis of subtidal microbial systems in Shark Bay, Australia. Marine Geol 303–306:115–136

    Article  Google Scholar 

  • Kah LC, Grotzinger JP (1992) Early Proterozoic (1.9 Ga) thrombolites of the Rocknest Formation, Northwest Territories. Palaios 7:305–315

    Article  Google Scholar 

  • Kahle CF (2001) Biosedimentology of a Silurian thrombolite reef with meter-scale growth framework cavities. J Sediment Res 71:410–422

    Article  Google Scholar 

  • Kennard JM, James NP (1986) Thrombolites and stromatolites: two distinct types of microbial structures. Palaios 1:492–503

    Article  Google Scholar 

  • Kershaw S, Crasquin S, Forel MB, Randon C, Collin PY, Kosun E, Richoz S, Baud A (2011) Earliest Triassic microbialites in Curuk Dag, southern Turkey: composition, sequences and controls on formation. Sedimentology 58:739–755

    Article  Google Scholar 

  • Li HK, Li HM, Lu SN (1995) Grain zircon U-Pb age for volcanic rocks from Tuanshanzi Formation of Changcheng System and their geological implication. Geochimica 24:43–48 (In Chinese with English abstract)

    Google Scholar 

  • Li HK, Zhu SX, Xiang ZQ, Su WB, Lu SN, Zhou HY, Geng JZ, Li S, Yang FJ (2010) Zircon U-Pb dating on tuff bed from Gaoyuzhuang formation in Yanqing, Beijing: further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton. Acta Petrologica Sinica 26:2131–2140 (In Chinese with English abstract)

    Google Scholar 

  • Lu SN, Li HM (1991) A precise U-Pb single zircon age determination for the volcanics of Dahongyu Formation, Changcheng system in Jixian. Acta Geosicientia Sinica 22:137–145 (In Chinese with English abstract)

    Google Scholar 

  • Lu SN, Zhao GC, Wang HC, Hao GJ (2008) Precambrian metamorphic basement and sedimentary cover of the North China Craton: a review. Precamb Res 160:77–93

    Google Scholar 

  • Mei MX, Ma YS, Guo QY (2001) Basic litho-faces-succession model for Wumishan cyclothems: their Markov chain analysis and regularly vertical stacking pattern in the third-order sequences. Acta Geol Sin 75:421–431

    Google Scholar 

  • Mobberley JM, Ortega MC, Foster JS (2012) Comparative microbial diversity analyses of modern marine thrombolitic mats by barcoded pyrosequencing. Environ Microbiol 14:82–100

    Article  Google Scholar 

  • Monty CLV (1976) The origin and development of cryptalgal fabrics. In: Walter MR (ed) Stromatolites: developments in sedimentology, vol 20. Elsevier, Amsterdam, pp 193–249

    Chapter  Google Scholar 

  • Myshrall KL, Mobberley JM, Green SJ, Visscher PT, Havemann SA, Reid RP, Foster JS (2010) Biogeochemical cycling and microbial diversity in the thrombolitic microbialites of Highborne Cay, Bahamas. Geobiology 8:337–354

    Article  Google Scholar 

  • Niederberger M, Cölfen H (2006) Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys Chem Chem Phys 8:3271–3287

    Article  Google Scholar 

  • Perri E, Spadafora A (2011) Evidence of microbial biomineralization in modern and ancient stromatolites. In: Seckbach J, Tewari V (eds) The Stromatolites: interaction of microbes with sediments: cellular origin, life in extreme habitats and astrobiology, vol 18. Springer, Berlin, pp 631–649

    Chapter  Google Scholar 

  • Perri E, Tucker ME (2007) Bacterial fossils and microbial dolomite in Triassic stromatolites. Geology 35:207–210

    Article  Google Scholar 

  • Perri E, Tucker ME, Spadafora A (2012) Carbonate organo-mineral micro- and ultrastructures in sub-fossil stromatolites: Marion lake, South Australia. Geobiology 10:105–117

    Article  Google Scholar 

  • Peryt TM, Hoppe A, Bechstaedt T, Koester J, Pierre C, Richter DK (1990) Late Proterozoic aragonitic cement crusts, Bambui Group, Minas Gerais, Brazil. Sedimentology 37:279–286

    Article  Google Scholar 

  • Planavsky N, Ginsburg RN (2009) Thaponomy of modern marine Bahamian microbialites. Palaios 24:5–24

    Article  Google Scholar 

  • Pruss SB, Corsetti FA, Fischer WW (2008) Seafloor-precipitated carbonate fans in the Neoproterozoic Rainstorm member, Johnnie Formation, Death Valley Region, USA. Sediment Geol 207:34–40

    Article  Google Scholar 

  • Qiao XF, Gao LZ, Zhang CH (2007) New idea of the Meso- and Neoproterozoic chronostratigraphic chart and tectonic environment in Sino-Korean Plate. Geol Bull Chin 26:503–509

    Google Scholar 

  • Riding R (2008) Abiogenic, microbial and hybrid authigenic carbonate crusts: components of Precambrian stromatolites. Geol Croat 61:73–103

    Google Scholar 

  • Riding R (2010) The nature of stromatolites: 3,500 million years of history and a century of research. In: Reitner J, Nadia-Valérie Q, Arp G (eds) Lecture Notes in Earth Sciences, vol 131. Springer, Berlin, pp 29–74

  • Sami TT, James NP (1994) Peritidal carbonate platform growth and cyclicity in an early Proterozoic foreland basin, Upper Pethei Group, northwest Canada. J Sediment Res 64:111–131

    Google Scholar 

  • Sandberg P (1985) Aragonite cements and their occurrence in ancient limestone. In: Schneidermann N, Harris PM (eds) Carbonate cements, vol 36. SEPM, Special Publication, Tulsa, Oklahoma, pp 33–57

  • Shapiro RS, Awramik SM (2006) Favosamaceria cooperi new group and form: a widely dispersed, time-restricted thrombolite. J Paleontol 80:411–422

    Article  Google Scholar 

  • Shi XY, Zhang CH, Jiang GQ, Liu J, Wang Y, Liu DB (2008) Microbial mats in the Mesoproterozoic carbonates of the north China Platform and their potential for hydrocarbon generation. J Chi Uni Geosci 19:549–566

    Article  Google Scholar 

  • Soudry D, Weissbrod T (1995) Morphogenesis and facies relationships of thrombolites and siliciclastic stromatolites in a Cambrian tidal sequence (Elat Area, Southern Israel). Palaeogeogr Palaeoclim Palaeoecol 114:339–355

    Article  Google Scholar 

  • Spadafora A, Perri E, McKenzie JA, Vasconcelos C (2010) Microbial biomineralization processes forming modern Ca: Mg carbonate stromatolites. Sedimentology 57:27–40

    Article  Google Scholar 

  • Sprachta S, Camoin G, Golubic S, Le Campion Th (2001) Microbialites in a modern lagoonal environment: nature and distribution (Tikehau atoll, French Polynesia). Palaeogeogr Palaeoclim Palaeoecol 175:103–124

    Article  Google Scholar 

  • Su WB, Li HK, Huff WD, Ettensohn FR, Zhang SH, Zhou HY, Wan YS (2010) SHRIMP U-Pb dating for a K-bentonite bed in the Tieling Formation, North China. Chin Sci Bull 55:3312–3323

    Article  Google Scholar 

  • Sumner DY, Grotzinger JP (1996) Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration? Geology 24:119–122

    Article  Google Scholar 

  • Sumner DY, Grotzinger JP (2000) Neoarchean aragonite precipitation: Petrography, facies associations, and environmental significance. In: Grotzinger JP, James NP (eds) Carbonate sedimentation and diagenesis in the evolving Precambrian world, vol 67. Society of Economic Paleontologists and Mineralogists, Special Publication, Tulsa, Oklahoma, pp 123–144

  • Sumner DY, Grotzinger JP (2004) Implications for Neoarchean ocean chemistry from primary carbonate mineralogy of the Campbellrand-Malmani platform, South Africa. Sedimentology 51:1273–1299

    Article  Google Scholar 

  • Tang DJ, Shi XY, Pei YP, Jiang GQ, Zhao GS (2011) Redox status of the Mesoproterozoic epeiric sea in North China. J Palaeogeogr 13:563–580 (In Chinese with English abstract)

    Google Scholar 

  • Thompson JB, Ferris FG, Smith DA (1990) Geomicrobiology and sedimentology of the mixolimnion and chemocline in Fayetteville Green Lake, New York. Palaios 5:52–75

    Article  Google Scholar 

  • Turner EC, James NP, Narbonne GM (2000) Taphonomic control on microstructure in early Neoproterozoic reefal stromatolites and thrombolites. Palaios 15:87–111

    Article  Google Scholar 

  • Vasconcelos C, McKenzie JA, Bernasconi S, Grujic D, Tien AJ (1995) Microbial mediation as a possible mechanism for dolomite formation. Nature 377:220–222

    Article  Google Scholar 

  • Walter MR, Heys GR (1985) Links between the rise of the metazoa and the decline of stromatolites. Precamb Res 29:149–174

    Article  Google Scholar 

  • Wang HZ, Shi XY, Wang XL, Yin HF, Qiao XF, Liu BP, Li ST, Chen JQ (2000) Research on the sequence stratigraphy of China. Guangdong Science and Technology Press, Guangzhou (In Chinese)

    Google Scholar 

  • Warthmann R, van Lith Y, Vasconcelos C, McKenzie JA, Karpoff AM (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology 28:1091–1094

    Article  Google Scholar 

  • Young JD, Martel J (2010) The rise and fall of nanobacteria. Sci Am 302:52–59

    Article  Google Scholar 

  • Zhou HR, Mei MX, Du BM, Luo ZQ, Lü M (2006) Study on the sedimentary features of high frequency Cyclothems of the Wumishan Formation at Jixian, Tianjin. Geoscience 20:209–215 (In Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgments

The study was supported by the Ministry of Science and Technology (No. 2011CB808806) and the National Natural Science Foundation of China (No. 40972022 and No. 40921062). We are grateful to Prof. Wolf-Christian Dullo, Editor in Chief, and two anonymous reviewers for their constructive suggestions and critical comments that greatly improved the paper. Thanks are also given to Drs. Yunpeng Pei, Lin Wang and Wenhao Zhang for their assistance in field work and to Mr. Luo Jun for his help in the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoying Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, D., Shi, X. & Jiang, G. Mesoproterozoic biogenic thrombolites from the North China platform. Int J Earth Sci (Geol Rundsch) 102, 401–413 (2013). https://doi.org/10.1007/s00531-012-0817-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-012-0817-9

Keywords

Navigation