Skip to main content
Log in

Hydrogeophysical imaging of alluvial aquifers: electrostratigraphic units in the quaternary Po alluvial plain (Italy)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The integration of surface geological and geomorphological information with borehole point-data and geophysical (e.g., geoelectrical) images of the subsurface yields spatially consistent representations of alluvial aquifers heterogeneity at different scales, from depositional systems to basin fills. Such an approach requires a conceptual framework to match the stratigraphic units with their evidence from ground-based DC resistivity methods to effectively fill the gaps between sparse borehole data and to obtain valid representations of sedimentary heterogeneities. Such an approach is applied to characterize two sites of the Quaternary aquifers of the central Po Plain (Italy), which represent (1) the middle-upper Pleistocene braided to meandering river depositional systems sitting on Southalpine crust and (2) their down-current counterparts, where they are involved by the latest uplift and deformation due to the tectonic activity of the Apennine frontal thrusts. Electrical resistivity was considered as a proxy of the litho-textural properties of hydrofacies and their major hierarchical association at depth and was interpreted in accordance with the depth-decreasing resolution of ground-based resistivity methods. Thus, it was possible to identify the geophysical signature of hydrostratigraphic units through “Electrostratigraphic Units”, i.e., sedimentary volumes identified by resistivity contrasts that spatially preserve the vertical polarity. Hydrostratigraphy and electrostratigraphy were then joined together through a site-specific relationship between electrical resistivity and hydraulic conductivity, which takes into account the prevailing process of current conduction, the litho-textural properties of hydrofacies and the groundwater electrical conductivity. At the scales of aquifer systems and complexes, this approach permitted to establish the conceptual framework to match hydrostratigraphy, electrostratigraphy, average hydrodynamic properties and distribution of heterogeneities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • AGIP (1994) Acque dolci sotterranee. Graf 3, Roma

  • Ahmad J, Schmitt DR, Rokosh CD, Pawlowicz JG (2009) High-resolution seismic and resistivity profiling of a buried Quaternary subglacial valley: Northern Alberta, Canada. Geol Soc Am Bull 121(11–12)

    Google Scholar 

  • Alfano L, Mancuso M (1996) Sull’applicabilità del metodo dipolare–dipolare continuo nelle ricerche idriche a media profondità in aree di pianura. Acque Sotter 13:61–71

    Google Scholar 

  • Anderson MP (1997) Characterization of geological heterogeneity. In: Dagan G, Neuman SP (eds) Subsurface flow and transport: a stochastic approach. Cambridge University Press, Cambridge

    Google Scholar 

  • Arca S, Beretta GP (1985) Prima sintesi geodetico-geologica sui movimenti verticali del suolo nell’Italia settentrionale (1897–1957). Boll Geod Sci Affin 2:125–156

    Google Scholar 

  • Archie GE (1942) The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. T Am Inst Metall Petrol Eng 146:54–62

    Google Scholar 

  • Baines D, Smith DG, Froese DG, Bauman P, Nimeck G (2002) Electrical resistivity ground imaging (ERGI): a new tool for mapping the lithology and geometry of channel-belts and valley fills. Sedimentol 49:441–449. doi:10.1046/j.1365-3091.2002.00453.x

    Article  Google Scholar 

  • Baio M, Bersezio R, Bini A, Cavalli E, Cantone M, Mele M, Pavia F, Losi E, Rigato V, Rodondi C, Sommaruga M, Zembo I (2009) Geological and geomorphological map of the Lodi alluvial Plain: the contribution of surface geology to hydrostratigraphic reconstruction. VII Italian Forum of Earth Sciences Geoitalia 2009, Epitome, 3: 5. ISSN 1972-1552

  • Bear J (1972) Dynamics of fluids in porous media. Elsevier, New York

    Google Scholar 

  • Bersezio R, Bini A, Giudici M (1999) Effects of sedimentary heterogeneity on groundwater flow in a quaternary pro-glacial delta environment: joining facies analysis and numerical modeling. Sediment Geol 129:327–344. doi:10.1016/S0037-0738(98)00145-6

    Article  Google Scholar 

  • Bersezio R, Pavia F, Baio M, Bini A, Felletti F, Rodondi C (2004) Aquifer architecture of the Quaternary alluvial succession of the southern Lambro basin (Lombardy, Italy). Il Quat 17(2–1):361–378

    Google Scholar 

  • Bersezio R, Giudici M, Mele M (2007) Combining sedimentological and geophysical data for high-resolution 3-D mapping of fluvial architectural elements in the Quaternary Po plain (Italy). Sediment Geol 202:230–248. doi:10.1016/j.sedgeo.2007.05.002

    Article  Google Scholar 

  • Bersezio R, Cavalli E, Cantone M (2010) Aquifer building and Apennine tectonics in a Quaternary foreland: the southernmost Lodi plain of Lombardy. In: Bersezio R, Amanti M (ed) Proceedings of the Second National Workshop “Multidisciplinary approach for porous aquifer characterization”. Mem Descr Carta Geol d’It XC:21–30, ISPRA, Roma

  • Bigi G, Cosentino D, Parotto M, Sartori D, Scandone P (1990) Structural model of Italy. Progetto Finalizzato Geodinamica CNR. SELCA, Firenze

    Google Scholar 

  • Bini A (1997a) Problems and methodologies in the study of Quaternary deposits of the Southern side of the Alps. Geol Insubrica 2(2):11–20

    Google Scholar 

  • Bini A (1997b) Stratigraphy, chronology and palaeogeography of Quaternary deposits of the area between the Ticino and Olona Rivers (Italy–Switzerland). Geol Insubrica 2(2):21–46

    Google Scholar 

  • Bini A, Strini A, Violanti D, Zuccoli L (2004) Geologia di sottosuolo dell’alta pianura a NE di Milano. Il Quat 17(2–1):343–354

    Google Scholar 

  • Binley A, Cassiani G, Deiana R (2010) Hydrogeophysics: opportunities and challenges. Boll Geofis Teor Appl 51(4):267–284

    Google Scholar 

  • Bowling JC, Rodriguez AB, Harry DL, Zheng C (2005) Delineating aquifer heterogeneity using resistivity and GPR data. Ground Water 43(6):890–903. doi:10.1111/j.1745-6584.2005.00103.x

    Google Scholar 

  • Bratus A, Santarato G (2009) The characterization of aquifers by means of resistivity investigations. Boll Geofis Teor Appl 50:15–28

    Google Scholar 

  • Bridge JS, Hyndman DS (2004) Aquifer characterization. In: Bridge, J.S., Hyndman, D.W. (ed) Aquifer Characterization. SEPM Spec Publ 80:1–2

  • Bridge JS, Lunt IA (2006) Depositional models of braided rivers. In: Sambrook Smith GH, Best JL, Bristow CS, Petts GE (ed) Braided Rivers. IAS Spec Publ 36:1–50, Blackwell, London

  • Carminati E, Martinelli G, Severi P (2003) Influence of glacial cycles and tectonics on natural subsidence in the Po plain (Northern Italy): insights from 14C ages. Geochem Geophys Geosyst 4(10):1082–1096. doi:10.1029/2002GC000481

    Article  Google Scholar 

  • Castiglioni GB, Pellegrini GB (2001) Note illustrative della Carta Geomorfologica della Pianura Padana. Suppl Geogr Fis Din Quat IV. Comitato Glaciologico Italiano, Torino

    Google Scholar 

  • Catuneanu O (2006) Principles of sequence stratigraphy. Elsevier, Amsterdam

    Google Scholar 

  • Christensen NB (2000) Difficulties in determining electrical anisotropy in subsurface investigations. Geophys Prospect 48:1–19. doi:10.1046/j.1365-2478.2000.00174.x

    Article  Google Scholar 

  • Cremaschi M (1987) Paleosols and vetusols in the central Po plain (Northern Italy). Collana Studi Ric Territ 28. UNICOPLI, Milano

  • Da Rold O (1990) L’apparato glaciale del Lago maggiore, settore orientale. PhD Dissertation, University of Milan

  • Dahlin T (2001) The development of DC resistivity images techniques. Comput Geosci 27:1019–1029. doi:10.1016/S0098-3004(00)00160-6

    Article  Google Scholar 

  • de Lima OAL, Niwas S (2000) Estimation of hydraulic parameters of shaly sandstone aquifers from geoelectrical measurements. J Hydrol 235:12–26. doi:10.1016/S0022-1694(00)00256-0

    Article  Google Scholar 

  • Dell’Arciprete D, Felletti F, Bersezio R (2010) Simulation of fine-scale heterogeneity of meandering river aquifer analogues: comparing different approaches. In: Atkinson PM, Lloyd CD (ed) geoENV VII geostatistics for environmental applications: quantitative geology and geostatistics. Springer, 16:127–137. doi:10.1007/978-90-481-2322-3_12

  • Desio A (1965) I rilievi isolati della pianura Lombarda ed i movimenti tettonici del Quaternario. Rend Istit Lomb 99:881–894

    Google Scholar 

  • Domenico PA, Schwartz FW (1990) Physical and chemical hydrogeology. Wiley, New York

    Google Scholar 

  • ENI-Regione Lombardia (2002) Geologia degli acquiferi padani della Regione Lombardia. SELCA, Firenze

    Google Scholar 

  • Fantoni R, Bersezio R, Forcella F (2004) Alpine structure and deformation chronology at the Southern Alps Po plain border in Lombardy. Boll Soc Geol Ital 123(3):463–476

    Google Scholar 

  • Galloway WE, Sharp JM Jr (1998) Characterizing aquifer heterogeneity within terrigenous clastic depositional systems. In: Fraser GS and Davis JM (ed) Hydrogeologic models of sedimentary aquifers. SEPM Concepts in Hydrogeology and Environmental Geology 1:85–90. Society for Sedimentary Geology, Tulsa

  • Giudici M (2010) Modeling water flow and solute transport in alluvial sediments: scaling and hydrostratigraphy from the hydrological point of view. In: Bersezio R, Amanti M (ed) Proceedings of the Second National Workshop “Multidisciplinary approach for porous aquifer characterization”. Mem Descr Carta Geol d’It XC:113-120, ISPRA, Roma

  • Gourry JC, Vermeersch F, Garcin M, Giot D (2003) Contribution of geophysics to the study of the alluvial deposits: a case study in the Val d’Avaray area of the River Loire, France. J Appl Geophys 54:35–49. doi:10.1016/j.jappgeo.2003.07.002

    Article  Google Scholar 

  • Hickin AS, Kerr B, Barchyn TE, Paulen RC (2009) Using Ground-Penetrating Radar and Capacitively Coupled Resistivity to Investigate 3-D Fluvial Architecture and Grain-Size Distribution of a Gravel Floodplain in Northeast British Columbia, Canada. J Sediment Res 79(6):457–477. doi:10.2110/jsr.2009.044

    Article  Google Scholar 

  • Hodlur GK, Dhakate R (2010) Correlation of vertical electrical sounding and electrical borehole log data for groundwater exploration. Geophys Prospect 58(3):485–503. doi:10.1111/j.1365-2478.2009.00831.x

    Article  Google Scholar 

  • Hubbard SS, Rubin Y (2000) Hydrogeological parameter estimation using geophysical data: a review of selected techniques. J Contam Hydrol 45:3–34. doi:10.1016/S0169-7722(00)00117-0

    Article  Google Scholar 

  • Huggenberger P, Aigner T (1999) Introduction to the special issue on aquifer-sedimentology: problems, perspectives and modern approaches. Sediment Geol 129:179–186. doi:10.1016/S0037-0738(99)00101-3

    Article  Google Scholar 

  • Huggenberger P, Regli C (2006) A sedimentological model to characterize braided river deposits for hydrogeological applications. In: Sambrook Smith GH, Best JL, Bristow CS, Petts GE (ed) Braided Rivers, IAS Spec Publ 36:51–74. Blackwell, London

  • Huntley D (1986) Relations between permeability and electrical resistivity in granular aquifers. Ground Water 24(4):466–474. doi:10.1111/j.1745-6584.1986.tb01025.x

    Article  Google Scholar 

  • Jussel P, Stauffer F, Dracos T (1994) Transport modeling in heterogeneous aquifers, 1. Statistical description and numerical generation of gravel deposits. Water Resour Res 30:1803–1817. doi:10.1029/94WR00162

    Article  Google Scholar 

  • Keller GV, Frischknecht FC (1966) Electrical methods in geophysical prospecting. Pergamon Press, Oxford

    Google Scholar 

  • Kelly WE, Frohlich RK (1985) Relations between aquifer electrical and hydraulic properties. Ground Water 23(2):182–189. doi:10.1111/j.1745-6584.1985.tb02791.x

    Article  Google Scholar 

  • Klein JD, Sill WR (1982) Electrical properties of artificial clay-bearing sandstones. Geophys 47(11):1593–1605. doi:10.1190/1.1441310

    Article  Google Scholar 

  • Klingbeil R, Kleineidam S, Asprion U, Aigner T, Teutsch G (1999) Relating lithofacies to hydrofacies: outcrop-based hydrogeological characterisation of Quaternary gravel deposits. Sediment Geol 129(3/4):299–310. doi:10.1016/S0037-0738(99)00067-6

    Article  Google Scholar 

  • Koefoed O (1979) Geosounding principles, 1: resistivity soundings measurements. Elsevier, Amsterdam

    Google Scholar 

  • Kosinski WK, Kelly WE (1981) Geoelectric soundings for predicting aquifer properties. Ground Water 19(2):163–171. doi:10.1111/j.1745-6584.1981.tb03455.x

    Article  Google Scholar 

  • Loke MH, Acworth I, Dahlin T (2003) A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Explor Geophys 34:182–187. doi:10.1071/EG03182

    Article  Google Scholar 

  • Maxey GB (1964) Hydrostratigraphic Units. J Hydrol 2:124–129

    Article  Google Scholar 

  • Mele M (2008) L’architettura degli acquiferi alluvionali: una metodologia integrata geologico-geofisica per la caratterizzazione a diverse scale. PhD dissertation, University of Milan

  • Mele M, Bersezio R, Giudici M, Rusnighi Y, Lupis D (2010) The architecture of alluvial aquifers: an integrated geological-geophysical methodology for multiscale characterization. In: Bersezio R, Amanti M (ed) Proceedings of the Second National Workshop “Multidisciplinary approach for porous aquifer characterization”. Mem Descr Carta Geol d’It XC: 209-224, ISPRA, Roma

  • Metwaly M, El-Qady G, Massoud U, El-Kenawy A, Matsushima J, Al-Arifi N (2010) Integrated geoelectrical survey for groundwater and shallow subsurface evaluation: case study at Siliyin spring, El-Fayoum. Egypt. Int J Earth Sci 99(6):1427–1436. doi:10.1007/s00531-009-0458-9

    Article  Google Scholar 

  • Miall AD (1996) The geology of fluvial deposits: sedimentary facies, basin analysis and petroleum geology. Springer, Berlin

    Google Scholar 

  • Muttoni G, Carcano C, Garzanti E, Ghielmi M, Piccin A, Pini R, Rogledi S, Sciunnach D (2003) Onset of Major Pleistocene glaciations in the Alps. Geol 31(11):989–992. doi:10.1130/G19445.1

    Article  Google Scholar 

  • Neal A (2004) Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth Sci Rev 66:261–330. doi:10.1016/j.earscirev.2004.01.004

    Article  Google Scholar 

  • Niwas S, de Lima OAL (2003) Aquifer parameter estimation from surface resistivity data. Ground Water 41(1):94–99. doi:10.1111/j.1745-6584.2003.tb02572.x

    Article  Google Scholar 

  • North American Commission on Stratigraphic Nomenclature (2005) North American Stratigraphic Code. Bull Am Assoc Petrol Geol 89(11):1547–1591. doi:10.1306/07050504129

    Google Scholar 

  • Ori GG (1993) Continental depositional systems of the Quaternary of the Po plain (Northern Italy). Sediment Geol 83(1–2):1–14. doi:10.1016/S0037-0738(10)80001-6

    Article  Google Scholar 

  • Pellegrini L, Boni P, Carton A (2003) Hydrographic evolution in relation to neotectonics aided by data processing and assessment: some examples from the Northern Apennines (Italy). Quat Inter 101–102:211–217. doi:10.1016/S1040-6182(02)00103-9

    Article  Google Scholar 

  • Pieri M, Groppi G (1981) Subsurface geological structure of the Po plain, Italy. Progetto Finalizzato Geodinamica, Pubbl 411. CNR, Roma

  • Ponzini G, Ostroman A, Molinari M (1983) Empirical relation between electrical transverse resistance and hydraulic transmissivity. Geoexplor 22:1–15. doi:10.1016/0016-7142(84)90002-4

    Article  Google Scholar 

  • Pous J, Queralt P, Chavez R (1996) Lateral and topographic effects in geoelectric soundings. J Appl Geophys 35:237–248. doi:10.1016/0926-9851(96)00034-1

    Article  Google Scholar 

  • Purvance DT, Andricevic R (2000) On the electrical-hydraulic conductivity correlation in aquifers. Water Resour Res 36(10):2905–2913. doi:10.1029/2000WR900165

    Article  Google Scholar 

  • Rubin Y, Hubbard SS (2005) Hydrogeophysics. Springer, The Netherlands

    Book  Google Scholar 

  • Scardia G, Muttoni G, Sciunnach D (2006) Subsurface magnetostratigraphy of Pleistocene sediments from the Po Plain (Italy): constraints on rates of sedimentation and rock uplift. Geol Soc of America Bull 118(11–12):1299–1312. doi:10.1130/B25869.1

    Article  Google Scholar 

  • Schön JH (2004) Physical properties of rocks: fundamentals and principles of petrophysics. Elsevier, Amsterdam

    Google Scholar 

  • Singh SB, Veeraiah B, Dhar RL, Prakash BA, Tulasi Rani M (2011) Deep resistivity sounding studies for probing deep fresh aquifers in the coastal area of Orissa, India. Hydrogeol J 19:355–366. doi:10.1007/s10040-010-0697-7

    Article  Google Scholar 

  • Sistema Informativo Falda SIF, Provincia di Milano http://www.provincia.milano.it/ambiente/acqua/acque_sotterranee/. Accessed December 2011

  • Slater L (2007) Near Surface Electrical Characterization of Hydraulic Conductivity: From Petrophysical Properties to Aquifer Geometries—a review. Surv Geophys 28:169–197. doi:10.1007/s10712-007-9022-y

    Article  Google Scholar 

  • Soupios PM, Kouli M, Vallianatos F, Vafidis A, Stavroulakis G (2007) Estimation of aquifer hydraulic parameters from surficial geophysical methods: A case study of Keritis Basin in Chania (Crete–Greece). J Hydrol 338:122–131. doi:10.1016/j.jhydrol.2007.02.028

    Article  Google Scholar 

  • Srinivasa Gowd S (2004) Electrical resistivity surveys to delineate groundwater potential aquifers in Peddavanka watershed, Anantapur District, Andhra Pradesh, India. Environ Geol 46(1):118–131. doi:10.1007/s00254-004-1023-2

    Google Scholar 

  • Tizro AT, Voudouris KS, Salehzade M, Mashayekhi H (2010) Hydrogeological framework and estimation of aquifer hydraulic parameters using geoelectrical data: a case study from West Iran. Hydrogeol J 18(4):917–929. doi:10.1007/s10040-010-0580-6

    Article  Google Scholar 

  • Unesco (1978) International glossary of hydrogeology. http://webworld.unesco.org/water/ihp/db/glossary/glu/aglu.htm. Accessed December 2011

  • Urish DW (1981) Electrical resistivity-hydraulic conductivity relationships in glacial outwash aquifers. Water Resourc Res 17(5):1401–1408. doi:10.1029/WR017i005p01401

    Article  Google Scholar 

  • Vukovic M, Soro A (1992) Determination of hydraulic conductivity of porous media from grain-size composition. Water Resour Publ, Littleton, Colorado

    Google Scholar 

  • Worthington PF (1993) The uses and the abuses of Archie equations, 1: The formation factor-porosity relationship. J Appl Geophys 30:215–228. doi:10.1016/0926-9851(93)90028-W

    Article  Google Scholar 

  • Yadav GS, Abolfazli H (1998) Geoelectrical soundings and their relationship to hydraulic parameters in semiarid regions of Jalore, northwestern India. J Appl Geophys 39:35–51. doi:10.1016/S0926-9851(98)00003-2

    Article  Google Scholar 

  • Yadav GS, Dasgupta AS, Sinha R, Lal T, Srivastava KM, Singh SK (2010) Shallow sub-surface stratigraphy of interfluves inferred from vertical electric soundings in western Ganga plains, India. Quat Intern 227:104–115. doi:10.1016/j.quaint.2010.05.030

    Article  Google Scholar 

  • Zaleha MJ, Ritter JB, Rumschlag JH (2005) Resolving fluvial, glaciofluvial, and glacial deposits using electrical resistivity ground imaging (ERGI). 8th International Conference on Fluvial Sedimentology, Delft, The Netherlands, Book of Abstract, TU Delft

  • Zarroca M, Bach J, Linares R, Pellicer XM (2011) Electrical methods (VES and ERT) for identifying, mapping and monitoring different saline domains in a coastal plain region (Alt Empordà, Northern Spain). J Hydrol 409(1–2):407–422. doi:10.1016/j.jhydrol.2011.08.052

    Article  Google Scholar 

Download references

Acknowledgments

Field data acquisition was possible thanks to the help of several undergraduate and graduate students, which are warmly acknowledged: Y. Rusnighi, D. Lupis, S. Inzoli, D. Gorna, M. G. Martinelli, F. Oriani, A. Suardi, N. Ceresa, S. Cantinotti, G. Broetto and A. Regorda. Assistance during field work and fruitful discussion with Emmanuele Cavalli helped during different stages of the research. This work was partially supported by the MIUR and the University of Milano through the research projects of national interest “Integrating geophysical and geological data for modelling flow in some aquifer systems of alpine and Apenninic origin between Milano and Bologna” (PRIN 2005) and “Integrated geophysical, geological, petrographical and modelling study of alluvial aquifer complexes characteristic of the Po plain subsurface: relationships between scale of hydrostratigraphic reconstruction and flow models” (PRIN 2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mele, M., Bersezio, R. & Giudici, M. Hydrogeophysical imaging of alluvial aquifers: electrostratigraphic units in the quaternary Po alluvial plain (Italy). Int J Earth Sci (Geol Rundsch) 101, 2005–2025 (2012). https://doi.org/10.1007/s00531-012-0754-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-012-0754-7

Keywords

Navigation