Skip to main content
Log in

Online visual tracking based on subspace representation with continuous occlusion modeling

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

As an important issue in image processing and computer vision, online visual tracking acts a critical role in numerous lines of research and has many potential applications. This paper presents a novel tracking algorithm based on subspace representation with continuous occlusion handling, the contributions of which are threefolds. First, this paper develops an effective objective function to represent the tracked object, in which the object reconstruction, the sparsity of the error term and the spatial consistency of the error term are simultaneously considered. Then, we derive an iterative algorithm to solve the proposed objective function based on the accelerated proximal gradient framework, and therefore obtain the optimal representation coefficients and the possible occlusion conditions. Finally, based on the proposed representation model, we design an effective likelihood function and a simple model update scheme for building a robust tracker within the particle filter framework. We conduct many experiments to evaluate the proposed tracking algorithm in comparisons with other state-of-the-art trackers. Both qualitative and quantitative evaluations demonstrate the proposed tracker achieves good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://cvlab.hanyang.ac.kr/tracker_benchmark/benchmark_v10.html.

  2. The precision plot indicates the percentage of frames whose center location error (CLE) is within the given threshold, and the precision score is given by the score on a selected representative threshold (e.g., 20 pixels). In addition, the success plot demonstrates the ratio of successful frames whose overlap rate is larger than the given threshold, and the success score is evaluated by the area under curve (AUC).

  3. We note that the APGL1, MTT, IVT and our methods are all belong to the “linear representation”-based tracking methods.

References

  1. Adam, A., Rivlin, E., Shimshoni, I.: Robust fragments-based tracking using the integral histogram. In: CVPR, pp. 798–805 (2006)

  2. Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple instance learning. In: CVPR, pp. 983–990 (2009)

  3. Bao, C., Wu, Y., Ling, H., Ji, H.: Real time robust \(\ell _1\) tracker using accelerated proximal gradient approach. In: CVPR, pp. 1830–1837 (2012)

  4. Black, M.J.: EigenTracking: robust matching and tracking of articulated objects using a view-based representation. Int. J. Comput. Vis. 26(1), 63–84 (1998)

    Article  Google Scholar 

  5. Comaniciu, D., Member, V.R., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Analy. Mach. Intell. 25(5), 564–575 (2003)

    Article  Google Scholar 

  6. Grabner, H., Bischof, H.: On-line boosting and vision. In: CVPR, pp. 260–267 (2006)

  7. Grabner, H., Leistner, C., Bischof, H.: Semi-supervised on-line boosting for robust tracking. In: ECCV, pp. 234–247 (2008)

  8. Hare, S., Saffari, A., Torr, P.H.S.: Struck: Structured output tracking with kernels. In: ICCV, pp. 263–270 (2011)

  9. He, S., Yang, Q., Lau, R.W., Wang, J., Yang, M.H.: Visual tracking via locality sensitive histograms. In: CVPR, pp. 2427–2434 (2013)

  10. Hu, W., Li, X., Zhang, X., Shi, X., Maybank, S.J., Zhang, Z.: Incremental tensor subspace learning and its applications to foreground segmentation and tracking. Int. J. Comput. Vis. 91(3), 303–327 (2011)

    Article  MATH  Google Scholar 

  11. Ji, Z., Wang, W.: Robust object tracking via multi-task dynamic sparse model. In: ICIP, pp. 393–397 (2014)

  12. Ji, Z., Wang, W.: Object tracking based on local dynamic sparse model. J. Vis. Commun. Image Represent. 28, 44–52 (2015)

    Article  Google Scholar 

  13. Ji, Z., Wang, W., Xu, N.: Robust object tracking via incremental subspace dynamic sparse model. In: ICME, pp. 1–6 (2014)

  14. Jia, X., Lu, H., Yang, M.H.: Visual tracking via adaptive structural local sparse appearance model. In: CVPR, pp. 1822–1829 (2012)

  15. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012)

    Article  Google Scholar 

  16. Kwon, J., Lee, K.M.: Visual tracking decomposition. In: CVPR, pp. 1269–1276 (2010)

  17. Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A., van den Hengel, A.: A survey of appearance models in visual object tracking. ACM Trans. Intell. Syst. Technol. 4(4), 58 (2013)

    Article  Google Scholar 

  18. Li, X., Hu, W., Zhang, Z., Zhang, X., Zhu, M., Cheng, J.: Visual tracking via incremental log-Euclidean Riemannian subspace learning. In: CVPR, pp. 1–8 (2008)

  19. Liu, B., Huang, J., Yang, L., Kulikowski, C.A.: Robust tracking using local sparse appearance model and k-selection. In: CVPR, pp. 1313–1320 (2011)

  20. Mei, X., Ling, H.: Robust visual tracking using \(\ell _1\) minimization. In: ICCV, pp. 1436–1443 (2009)

  21. Mei, X., Ling, H., Wu, Y., Blasch, E.P., Bai, L.: Efficient minimum error bounded particle resampling L1 tracker with occlusion detection. IEEE Trans. Image Process. 22(7), 2661–2675 (2013)

    Article  MathSciNet  Google Scholar 

  22. Pérez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-based probabilistic tracking. In: ECCV, pp. 661–675 (2002)

  23. Ren, T., Qiu, Z., Liu, Y., Yu, T., Bei, J.: Soft-assigned bag of features for object tracking. Multimed. Syst. 22(7), 2661–2675 (2014)

    Google Scholar 

  24. Ross, D., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77(1–3), 125–141 (2008)

    Article  Google Scholar 

  25. Wang, D., Lu, H.: Object tracking via 2DPCA and \(\ell _1\)-regularization. IEEE Signal Process. Lett. 19(11), 711–714 (2012)

    Article  Google Scholar 

  26. Wang, D., Lu, H.: On-line learning parts-based representation via incremental orthogonal projective non-negative matrix factorization. Signal Process. 93, 1608–1623 (2013)

    Article  Google Scholar 

  27. Wang, D., Lu, H.: Visual tracking via probability continuous outlier model. In: CVPR, pp. 3478–3485 (2014)

  28. Wang, D., Lu, H., Yang, M.H.: Least soft-threshold squares tracking. In: CVPR, pp. 2371–2378 (2013)

  29. Wang, D., Lu, H., Yang, M.H.: Online object tracking with sparse prototypes. IEEE Trans. Image Process. 22(1), 314–325 (2013)

    Article  MathSciNet  Google Scholar 

  30. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    Article  Google Scholar 

  31. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: CVPR, pp. 2411–2418 (2013)

  32. Yang, F., Lu, H., Yang, M.: Robust superpixel tracking. IEEE Trans. Image Process. 23(4), 1639–1651 (2014)

    Article  MathSciNet  Google Scholar 

  33. Yang, H., Shao, L., Zheng, F., Wang, L., Song, Z.: Recent advances and trends in visual tracking: a review. Neurocomputing 74(18), 3823–3831 (2011)

    Article  Google Scholar 

  34. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38(4), 1–45 (2006)

    Article  Google Scholar 

  35. Zhang, K., Song, H.: Real-time visual tracking via online weighted multiple instance learning. Pattern Recognit. 46(1), 397–411 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Low-rank sparse learning for robust visual tracking. In: ECCV, pp. 470–484 (2012)

  37. Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Robust visual tracking via multi-task sparse learning. In: CVPR, pp. 2042–2049 (2012)

  38. Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Robust visual tracking via structured multi-task sparse learning. Int. J. Comput. Vis. 101(2), 367–383 (2013)

    Article  MathSciNet  Google Scholar 

  39. Zhang, T., Ghanem, B., Xu, C., Ahuja, N.: Object tracking by occlusion detection via structured sparse learning. In: CVPR workshops, pp. 1033–1040 (2013)

  40. Zhang, T., Jia, K., Xu, C., Ma, Y., Ahuja, N.: Partial occlusion handling for visual tracking via robust part matching. In: CVPR, pp. 1258–1265 (2014)

  41. Zhang, T., Liu, S., Ahuja, N., Yang, M., Ghanem, B.: Robust visual tracking via consistent low-rank sparse learning. Int. J. Comput. Vis. 111(2), 171–190 (2015)

    Article  Google Scholar 

  42. Zhao, H., Wang, X.: Robust visual tracking via discriminative appearance model based on sparse coding. Multimed. Syst. 22(7), 2661–2675 (2014)

    Google Scholar 

  43. Zhong, W., Lu, H., Yang, M.: Robust object tracking via sparse collaborative appearance model. IEEE Trans. Image Process. 23(5), 2356–2368 (2014)

    Article  MathSciNet  Google Scholar 

  44. Zhong, W., Lu, H., Yang, M.H.: Robust object tracking via sparsity-based collaborative model. In: CVPR, pp. 1838–1845 (2012)

Download references

Acknowledgments

This work is supported by Natural Science Foundation of Liaoning Province (Grant No. 2013020018), General Science Research Projects of Liaoning Provincial Department of Education (Grant No. L2014536), Fundamental Research Funds for Central Universities (Grant No. DC201501010401, DC201501060201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junxing Zhang.

Additional information

Communicated by M. Cooper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bo, C., Zhang, J., Liu, C. et al. Online visual tracking based on subspace representation with continuous occlusion modeling. Multimedia Systems 23, 357–368 (2017). https://doi.org/10.1007/s00530-015-0496-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-015-0496-z

Keywords

Navigation