Skip to main content
Log in

Multiplicity results for some nonlinear elliptic problems with asymptotically \({{\varvec{p}}}\)-linear terms

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Taking any \(p > 1\), we consider the asymptotically p-linear problem

$$\begin{aligned} \left\{ \begin{array}{ll} - {{\mathrm{div}}}(a(x,u,\nabla u)) + A_t(x,u,\nabla u)\ = \ \lambda ^\infty |u|^{p-2}u + g^\infty (x,u) &{}\quad \hbox {in}\;\Omega ,\\ u\ = \ 0 &{}\quad \hbox {on}\;\partial \Omega , \end{array} \right. \end{aligned}$$

where \(\Omega \) is a bounded domain in \(\mathbb R^N\), \(N\ge 2\), \(A(x,t,\xi )\) is a real function on \(\Omega \times \mathbb R\times \mathbb R^N\) which grows with power p with respect to \(\xi \) and has partial derivatives \(A_t(x,t,\xi ) = \frac{\partial A}{\partial t}(x,t,\xi )\), \(a(x,t,\xi ) = \nabla _\xi A(x,t,\xi )\). If \(A(x,t,\xi ) \rightarrow A^\infty (x,t)\) and \(\frac{g^\infty (x,t)}{|t|^{p-1}} \rightarrow 0\) as \(|t| \rightarrow +\infty \), suitable assumptions, variational methods and either the cohomological index theory or its related pseudo-index one, allow us to prove the existence of multiple nontrivial bounded solutions in the non-resonant case, i.e. if \(\lambda ^\infty \) is not an eigenvalue of the operator associated to \(\nabla _\xi A^\infty (x,\xi )\). In particular, while in [14] the model problem \(A(x,t,\xi ) = \mathcal{A}(x,t) |\xi |^p\) with \(p > N\) is studied, here our goal is twofold: extending such results not only to a more general family of functions \(A(x,t,\xi )\), but also to the more difficult case \(1 < p \le N\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, H., Zehnder, E.: Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7, 539–603 (1980)

    MathSciNet  MATH  Google Scholar 

  2. Anane, A., Gossez, J.P.: Strongly nonlinear elliptic problems near resonance: a variational approach. Commun. Partial Differ. Equ. 15, 1141–1159 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arcoya, D., Boccardo, L.: Critical points for multiple integrals of the calculus of variations. Arch. Ration. Mech. Anal. 134, 249–274 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arcoya, D., Orsina, L.: Landesman–Lazer conditions and quasilinear elliptic equations. Nonlinear Anal. 28, 1623–1632 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartolo, P., Benci, V., Fortunato, D.: Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity. Nonlinear Anal. 7, 981–1012 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bartolo, R., Candela, A.M., Salvatore, A.: \(p\)-Laplacian problems with nonlinearities interacting with the spectrum. Nonlinear Differ. Equ. Appl. 20, 1701–1721 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benci, V.: On the critical point theory for indefinite functionals in the presence of symmetries. Trans. Am. Math. Soc. 274, 533–572 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boccardo, L., Murat, F., Puel, J.P.: Existence of bounded solutions for nonlinear elliptic unilateral problems. Ann. Mat. Pura Appl. IV Ser. 152, 183–196 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brézis, H., Coron, J.M., Nirenberg, L.: Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz. Commun. Pure Appl. Math. 33, 667–689 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Browder, F.E.: Existence theorems for nonlinear partial differential equations. In: Chern, S.S., Smale, S. (eds.) Proceedings of the Symposia in Pure Mathematics, vol. XVI. AMS, Providence, pp. 1–60 (1970)

  11. Candela, A.M., Palmieri, G.: Infinitely many solutions of some nonlinear variational equations. Calc. Var. Partial Differ. Equ. 34, 495–530 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Candela, A.M., Palmieri, G.: Some abstract critical point theorems and applications. In: Hou, X., Lu, X., Miranville, A., Su, J., Zhu, J. (eds.) Dynamical Systems, Differential Equations and Applications, Discrete Contin. Dynam. Syst. Suppl. 2009, pp. 133–142 (2009)

  13. Candela, A.M., Palmieri, G.: Multiple solutions for \(p\)-Laplacian type problems with an asymptotically \(p\)-linear term. In: de Figueiredo, D.G., do Ó, J.M., Tomei, C. (eds.) Analysis and Topology in Nonlinear Differential Equations, Progr. Nonlinear Differential Equations Appl., vol. 85, pp. 175–186 (2014)

  14. Candela, A.M., Palmieri, G., Perera, K.: Multiple solutions for \(p\)-Laplacian type problems with asymptotically \(p\)-linear terms via a cohomological index theory. J. Differ. Equ. 259, 235–263 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cerami, G.: Un criterio di esistenza per i punti critici su varietà illimitate. Istit. Lombardo Accad. Sci. Lett. Rend. A 112, 332–336 (1978)

    MathSciNet  MATH  Google Scholar 

  16. Costa, D.G., Magalhães, C.A.: Existence results for perturbations of the \(p\)-Laplacian. Nonlinear Anal. 24, 409–418 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Drábek, P., Robinson, S.: Resonance problems for the \(p\)-Laplacian. J. Funct. Anal. 169, 189–200 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fadell, E.R., Rabinowitz, P.H.: Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems. Invent. Math. 45, 139–174 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968)

    MATH  Google Scholar 

  20. Liu, S., Li, S.: Existence of solutions for asymptotically ‘linear’ \(p\)-Laplacian equations. Bull. Lond. Math. Soc. 36, 81–87 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, G., Zhou, H.S.: Asymptotically linear Dirichlet problem for the \(p\)-Laplacian. Nonlinear Anal. 43, 1043–1055 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, G., Zhou, H.S.: Multiple solutions to \(p\)-Laplacian problems with asymptotic nonlinearity as \(u^{p-1}\) at infinity. J. Lond. Math. Soc. 65, 123–138 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Palais, R.S.: Critical point theory and the minimax principle. Proc. Symp. Pure Math. 15, 185–212 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  24. Perera, K., Agarwal, R.P., O’Regan, D.: Morse Theoretic Aspects of \(p\)-Laplacian Type Operators, Math. Surveys Monogr., vol. 161, Am. Math. Soc., Providence RI (2010)

  25. Perera, K., Szulkin, A.: \(p\)-Laplacian problems where the nonlinearity crosses an eigenvalue. Discrete Contin. Dyn. Syst. 13, 743–753 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., vol. 65, Providence (1986)

  27. Struwe, M.: Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 4rd edn, Ergeb. Math. Grenzgeb. (4), vol. 34. Springer, Berlin (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Candela.

Additional information

Communicated by P. Rabinowitz.

A.M. Candela: The author acknowledges the partial support of Research Funds from the INdAM – GNAMPA Project 2015 “Metodi variazionali e topologici applicati allo studio di problemi ellittici non lineari”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Candela, A.M., Palmieri, G. Multiplicity results for some nonlinear elliptic problems with asymptotically \({{\varvec{p}}}\)-linear terms. Calc. Var. 56, 72 (2017). https://doi.org/10.1007/s00526-017-1170-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-017-1170-4

Mathematics Subject Classification

Navigation