Skip to main content
Log in

Localized nodal solutions of higher topological type for semiclassical nonlinear Schrödinger equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We investigate the existence of localized sign-changing solutions for the semiclassical nonlinear Schrödinger equation

$$\begin{aligned} -\epsilon ^2\Delta v+V(x)v=|v|^{p-2}v,\ v\in H^1(\mathbb {R}^N) \end{aligned}$$

where \(N\ge 2,\) \(2<p<2^*\), \(\epsilon >0\) is a small parameter, and V is assumed to be bounded and bounded away from zero. When V has a local minimum point P, as \(\epsilon \rightarrow 0\), we construct an infinite sequence of localized sign-changing solutions clustered at P and these solutions are of higher topological type in the sense that they are obtained from a minimax characterization of higher dimensional symmetric linking structure via the symmetric mountain pass theorem. It has been an open question whether the sign-changing solutions of higher topological type can be localized and our result gives an affirmative answer. The existing results in the literature have been subject to some geometrical or topological constraints that limit the number of localized sign-changing solutions. At a local minimum point of V, Bartsch et al. (Math Ann 338:147–185, 2007) proved the existence of N pairs of localized sign-changing solutions and D’Aprile and Pistoia (Ann Inst Hénri Poincare Anal Non Linéaire 26:1423–1451, 2009) constructed 9 pairs of localized sign-changing solutions for \(N\ge 3\). Our result gives an unbounded sequence of such solutions. Our method combines the Byeon and Wang’s penalization approach and minimax method via a variant of the classical symmetric mountain pass theorem, and is rather robust without using any non-degeneracy conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C., Soares, S.H.M.: On the location and profile of spike-layer nodal solutions to nonlinear Schrödinger equations. J. Math. Anal. Appl. 296, 563–577 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosetti, A., Badiale, M., Cingolani, S.: Semiclassical states of nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 140, 285–300 (1997)

    Article  MATH  Google Scholar 

  3. Ambrosetti, A., Malchiodi, A.: Progress in Mathematics, vol. 240. Perturbation Methods and Semilinear Elliptic Problem on \(\mathbb{R}^N\). Birkhäuser, Basel (2006)

    Google Scholar 

  4. Ambrosetti, A., Malchiodi, A., Secchi, S.: Multiplicity results for some nonlinear Schrödinger equations with potentials. Arch. Ration. Mech. Anal. 159, 253–271 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartsch, T., Clapp, M., Weth, T.: Configuration spaces, transfer and 2-nodal solutions of semiclassical nonlinear Schrödinger equation. Math. Ann. 338, 147–185 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bartsch, T., Liu, Z.: On a superlinear elliptic \(p\)-Laplacian equation. J. Differ. Equ. 198, 149–175 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bartsch, T., Liu, Z., Weth, T.: Nodal solutions of a \(p\)-Laplacian equation. Proc. Lond. Math. Soc. (3) 91, 129–152(2005)

  8. Bartsch, T., Pankov, A., Wang, Z.-Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3, 549–569 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Byeon, J., Wang, Z.-Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 165, 295–316 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Byeon, J., Wang, Z.-Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations, II. Calc. Var. Partial Differ. Equ. 18, 207–219 (2003)

    Article  MATH  Google Scholar 

  11. Cerami, G., Devillanova, G., Solimini, S.: Infinitely many bound states for some nonlinear scalar field equations. Calc. Var. Partial Differ. Equ. 23, 139–168 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. D’Aprile, T., Pistoia, A.: On the number of sign-changing solutions of a semiclassical nonlinear Schrödinger equation. Adv. Differ. Equ. 12, 737–758 (2007)

    MATH  Google Scholar 

  13. D’Aprile, T., Pistoia, A.: Existence, multiplicity and profile of sign-changing clustered solutions of a semiclassical nonlinear Schrödinger equation. Ann. Inst. Henri Poincaré Anal. Non Linéaire 26, 1423–1451 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. D’Aprile, T., Ruiz, D.: Positive and sign-changing clusters around saddle points of the potential for nonlinear elliptic problems. Math. Z. 268, 605–634 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Del Pino, M., Felmer, P.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4, 121–137 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Del Pino, M., Felmer, P.: Multi-peak bound states for nonlinear Schrödinger equations. Ann. Inst. Henri Poincaré Anal. Non Linéaire 15, 127–149 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ding, Y., Lin, F.: Solutions of perturbed Schrödinger equations with critical frequency. Calc. Var. Partial Differ. Equ. 30, 231–249 (2007)

    Article  MATH  Google Scholar 

  18. Ding, Y., Wang, Z.-Q.: Bound states of nonlinear Schrödinger equations with magnetic fields. Ann. Math. Pura Appl. (4) 190, 427–451 (2011)

  19. Ding, Y., Wei, J.: Semiclassical states for nonlinear Schrödinger equations with sign-changing potentials. J. Funct. Anal. 251, 546–572 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Esteban, M.J., Lions, P.-L.: Existence and nonexistence results for semilinear elliptic problems in unbounded domains. Proc. R. Soc. Edinb. Sect. A 93, 1–14 (1982/83)

  21. Fei, M.: Sign-changing multi-peak solutions for nonlinear Schrödinger equations with compactly supported potential. Acta Appl. Math. 127, 137–154 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Floer, A., Weinstein, A.: Nonspreading wave pockets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grossi, M., Servadei, R.: Morse index for solutions of the nonlinear Schrödinger equation in a degenerate setting. Ann. Math. Pura Appl. (4) 186, 433–453(2007)

  24. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  25. Kang, X., Wei, J.: On interacting bumps of semi-classical states of nonlinear Schrödinger equations. Adv. Differ. Equ. 5, 899–928 (2000)

    MATH  Google Scholar 

  26. Liu, J., Liu, X., Wang, Z.-Q.: Multiple mixed states of nodal solutions for nonlinear Schrödinger systems. Calc. Var. Partial Differ. Equ. 52, 565–586 (2015)

    Article  MATH  Google Scholar 

  27. Liu, J., Liu, X., Wang, Z.-Q.: Sign-changing solutions for coupled nonlinear Schrödinger equations with critical growth. J. Differ. Equ. 261, 7194–7236 (2016)

    Article  MATH  Google Scholar 

  28. Liu, Z., Wang, Z.-Q., Zhang, J.: Infinitely many sign-changing solutions for the nonlinear Schrödinger–Poisson system. Ann. Math. Pura Appl. (4) 195, 775–794(2016)

  29. Musso, M., Wei, J.: Nondegeneracy of nodal solutions to the critical Yamabe problem. Commun. Math. Phys. 340, 1049–1107 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Oh, Y.-G.: On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Commun. Math. Phys. 131, 223–253 (1990)

    Article  MATH  Google Scholar 

  31. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rabinowitz, P.: Minimax methods in critical point theory with applications to differential equations. In: CBMS regional conference series in mathematics, vol. 65. American Mathematical Society, Providence (1986)

  33. Sato, Y.: Sign-changing multi-peak solutions for nonlinear Schrödinger equations with critical frequency. Commun. Pure Appl. Anal. 7, 883–903 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sato, Y., Tanaka, K.: Sign-changing multi-bump solutions for nonlinear Schrödinger equations with steep potential wells. Trans. Am. Math. Soc. 361, 6205–6253 (2009)

    Article  MATH  Google Scholar 

  35. Solimini, S.: Multiplicity techniques for problems without compactness, stationary partial differential equations. In: Handbook of Differential Equations, vol. II, pp. 519–599. Elsevier/North-Holland, Amsterdam (2005)

  36. Wang, X.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153, 229–244 (1993)

    Article  MATH  Google Scholar 

  37. Willem, M.: Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, vol. 24. Birkhäuser, Boston (1996)

    Google Scholar 

Download references

Acknowledgements

S. Chen is supported by Science Foundation of Huaqiao University (13BS208) and Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (ZQN-PY119). Z.-Q. Wang is supported by NSFC-11271201 and a Simons collaboration grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Qiang Wang.

Additional information

Communicated by P. Rabinowitz.

Appendix

Appendix

The goal of this appendix is to give a proof for Lemma 3.3. We first define an operator A on \(H^1(\mathbb {R}^N)\). For \(u\in H^1(\mathbb {R}^N),\) defined \(w=A(u)\) by the unique solution to

$$\begin{aligned} -\Delta w+V(\epsilon x)w+2\beta \left( \int _{\mathbb {R}^N}\chi _\epsilon u^2dx-1\right) ^{\beta -1}_+\chi _\epsilon w=|u|^{p-2}u,\quad w\in H^1(\mathbb {R}^N).\nonumber \\ \end{aligned}$$
(5.3)

We note that A is odd on \(H^1(\mathbb {R}^N)\).

Lemma 5.3

A is well defined and continuous on \(H^1(\mathbb {R}^N).\)

Proof

It is easy to see A is well defined as

$$\begin{aligned} \xi (u):=2\beta \left( \int _{\mathbb {R}^N}\chi _\epsilon u^2dx-1\right) ^{\beta -1}_+ \end{aligned}$$
(5.4)

is non-negative. Now, if \(u_n\rightarrow u\) in \(H^1(\mathbb {R}^N)\), we have

$$\begin{aligned}&\min \{1,a\}||A(u_n)-A(u)||^2\nonumber \\&\quad \le \int _{\mathbb {R}^N}\Big ||u_n|^{p-2} u_n-|u|^{p-2}u\Big |\cdot |A(u_n)-A(u)|dx\\&\qquad +\,|\xi (u_n)-\xi (u)|\int _{\mathbb {R}^N}\chi _\epsilon |A(u_n)-A(u)|\cdot |A(u)|dx. \end{aligned}$$

By Sobolev embedding, it suffices to show \(|\xi (u_n)-\xi (u)|\rightarrow 0,\) which is obvious. \(\square \)

Lemma 5.4

For any \(u\in H^1(\mathbb {R}^N),\)

$$\begin{aligned} \langle \Gamma '_\epsilon (u), u-A(u)\rangle =||u-A(u)||^2_V+\xi (u)\int _{\mathbb {R}^N}\chi _\epsilon \cdot (u-A(u))^2dx, \end{aligned}$$
(5.5)

where \(||u||_V=(\int _{\mathbb {R}^N}(|\nabla u|^2+V(\epsilon x)u^2)dx)^{1/2}.\) And there exists a positive constant C such that

$$\begin{aligned} ||\Gamma '_\epsilon (u)||\le ||u-A(u)|| (1+C||u||^{2\beta -2}),\quad \forall u\in H^1(\mathbb {R}^N). \end{aligned}$$
(5.6)

Proof

Direct computations show (5.5) and for any \(\varphi \in H^1(\mathbb {R}^N)\),

$$\begin{aligned} \langle \Gamma '_\epsilon (u), \varphi \rangle =(u-A(u),\varphi )_V+\xi (u)\int _{\mathbb {R}^N}\chi _\epsilon \cdot (u-A(u))\cdot \varphi dx, \end{aligned}$$

where

$$\begin{aligned} (u,v)_V=\int _{\mathbb {R}^N}(\nabla u\nabla v+V(\epsilon x)uv)dx. \end{aligned}$$

Here we used the fact that A(u) solves Eq. (5.3). Then using

$$\begin{aligned} |\xi (u)\int _{\mathbb {R}^N}\chi _\epsilon \cdot (u-A(u))\varphi dx|\le C||u||^{2\beta -2}||u-A(u)||\cdot ||\varphi ||, \end{aligned}$$

we see the result (5.6) follows. \(\square \)

Lemma 5.5

There exists \(\sigma _0>0\) such that for \(\sigma \in (0,\sigma _0)\),

$$\begin{aligned} A(\partial (P^\sigma _-))\subset P^\sigma _-,\ A(\partial (P^\sigma _+))\subset P^\sigma _+. \end{aligned}$$

Proof

We only prove \(A(\partial (P^\sigma _-))\subset P^\sigma _-.\) For \(u\in H^1(\mathbb {R}^N)\), let \(w=A(u)\). We have

$$\begin{aligned} \text{ dist }_{H^1}(w,P_-)||w^+||\le & {} ||w^+||^2\le (\min \{1,a\})^{-1}||w^+||^2_V=(\min \{1,a\})^{-1}(w, w^+)_V\nonumber \\= & {} -(\min \{1,a\})^{-1}\xi (u)\int _{\mathbb {R}^N}\chi _\epsilon \cdot w\cdot w^+dx\nonumber \\&+\;(\min \{1,a\})^{-1}\int _{\mathbb {R}^N}|u|^{p-2}uw^+dx\nonumber \\\le & {} (\min \{1,a\})^{-1}\int _{\mathbb {R}^N}|u|^{p-2}u^+w^+dx\nonumber \\\le & {} (\min \{1,a\})^{-1}||u^+||^{p-1}_{L^p}||w^+||_{L^p}\nonumber \\= & {} (\min \{1,a\})^{-1}(\text{ dist }_{L^p}(u, P_-))^{p-1}||w^+||_{L^p}\nonumber \\\le & {} C(\text{ dist }_{H^1}(u, P_-))^{p-1}||w^+||. \end{aligned}$$
(5.7)

Here we used \(\text{ dist }_{L^p}(v, P_-)=||v^+||_{L^p}\) for any \(v\in L^p(\mathbb {R}^N)\) in the last equality, where

$$\begin{aligned} \text{ dist }_{L^p}(u, B)=\inf _{v\in B}||u-v||_{L^p} \end{aligned}$$

for any \(u\in L^p(\mathbb {R}^N)\) and any \(B\subset L^p(\mathbb {R}^N).\) Thus we have

$$\begin{aligned} \text{ dist }_{H^1}(w,P_-)\le C\sigma ^{p-1}. \end{aligned}$$

For \(\sigma >0\) small, the conclusion follows. \(\square \)

Since A may be only continuous, we need to have a locally Lipschitz perturbation of A. Set \(E_0=H^1(\mathbb {R}^N){\setminus }\mathcal {K}\), where \(\mathcal {K}\) is the set of fixed points of A,  i.e., the set of critical points of \(\Gamma _\epsilon \).

Lemma 5.6

There exists a locally Lipschitz continuous operator \(B:E_0\rightarrow H^1(\mathbb {R}^N)\) such that

  1. (1)

    \(B(\partial ( P^\sigma _+))\subset P^\sigma _+\) and \(B(\partial (P^\sigma _-))\subset P^\sigma _-\) for \(\sigma \in (0,\sigma _0).\)

  2. (2)

    \(\frac{1}{2}||u-B(u)||\le ||u-A(u)||\le 2||u-B(u)||,\) \(\forall u\in E_0.\)

  3. (3)

    \(\langle \Gamma '_\epsilon (u), u-B(u)\rangle \ge \frac{1}{2}||u-A(u)||^2\), \(\forall u\in E_0.\)

  4. (4)

    B is odd.

Proof

The proof is similar to the proofs of [6, Lemma 4.1] and [7, Lemma 2.1].We omit the details. \(\square \)

Since \(\Gamma _\epsilon \) satisfies \((PS)_c\) condition for \(c<L\) if \(0<\epsilon <\epsilon _L\) (see Lemma 2.2), using the map B and by the same argument as [26, Lemma 3.5] or [28, Lemma 3.6], we have the following lemma

Lemma 5.7

Let \(0<\epsilon <\varepsilon _L\) and \(c<L\). Let \(\mathcal {N}\) be a symmetric closed neighborhood of \(K_c.\) Then there exists a positive constant \(\tau _0\) such that for \(0<\tau<\tau '<\tau _0,\) there exists a continuous map \(\zeta :[0,1]\times H^1(\mathbb {R}^N)\rightarrow H^1(\mathbb {R}^N)\) satisfying

  1. (1)

    \(\zeta (0,u)=u\) for all \(u\in H^1(\mathbb {R}^N)\);

  2. (2)

    \(\zeta (t,u)=u\) for \(t\in [0,1]\), \(\Gamma _\epsilon (u)\not \in [c-\tau ',c+\tau ']\);

  3. (3)

    \(\zeta (t,-u)=-\zeta (t,u)\) for all \(t\in [0,1]\) and \(u\in H^1(\mathbb {R}^N)\);

  4. (4)

    \(\zeta (1,(\Gamma _\epsilon )^{c+\tau }{\setminus }\mathcal {N})\subset (\Gamma _\epsilon )^{c-\tau }\);

  5. (5)

    \(\zeta (t, \partial (P^\sigma _+))\subset P^\sigma _+,\) \(\zeta (t,\partial (P^\sigma _-))\subset P^\sigma _-\), \(\zeta (t, P^\sigma _+)\subset P^\sigma _+,\) \(\zeta (t, P^\sigma _-)\subset P^\sigma _-\), \(t\in [0,1]\).

Proof of Lemma 3.3

Let \(\mathcal {D}\) be a closed symmetric neighborhood of \(K_c{\setminus } W.\) Note that \(\mathcal {N}=\mathcal {D}\cup \overline{P^\sigma _+}\cup \overline{P^\sigma _-}\) is a closed symmetric neighborhood of \(K_c\). According to Lemma 5.7, we can choose \(\eta = \zeta (1, \cdot )\) in Definition 3.1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Wang, ZQ. Localized nodal solutions of higher topological type for semiclassical nonlinear Schrödinger equations. Calc. Var. 56, 1 (2017). https://doi.org/10.1007/s00526-016-1094-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-016-1094-4

Mathematics Subject Classification

Navigation