Skip to main content
Log in

Configuration spaces, transfer, and 2-nodal solutions of a semiclassical nonlinear Schrödinger equation

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We establish new lower bounds for the number of nodal bound states for the semiclassical nonlinear Schrödinger equation \(-\varepsilon^2 \Delta u+ a(x)u=|u|^{p-2}u\) with bounded and uniformly continuous potential a. The solutions we obtain have precisely two nodal domains, and their positive and negative parts concentrate near the set of minimum points of a. Our approach is independent of penalization techniques and yields, in some cases, the existence of infinitely many nodal solutions for fixed \(\varepsilon\). Via a dynamical systems approach, we exhibit positively invariant sets of sign changing functions for the negative gradient flow of the associated energy functional. We analyze these sets on the cohomology level with the help of Dold’s fixed point transfer. In particular, we estimate their cuplength in terms of the cuplength of equivariant configuration spaces of subsets of \(\mathbb{R}^N\). We also provide new estimates of the cuplength of configuration spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackermann N. and Bartsch Th. (2005). Superstable manifolds of semilinear parabolic problems. J. Dyn. Diff. Equ. 17: 115–173

    Article  MATH  MathSciNet  Google Scholar 

  2. Ackermann, N., Bartsch, Th., Kaplicky, P., Quittner, P.: A priori bounds, nodal equilibria and connecting orbits in indefinite semilinear parabolic problems. Trans. Amer. Math. Soc., (in press) (2006)

  3. Alves C. and Soares S.H.M. (2004). On the location and profile of spike-layer nodal solutions to nonlinear Schrödinger equations. J. Math. Anal. Appl. 296: 563–577

    Article  MATH  MathSciNet  Google Scholar 

  4. Ambrosetti A., Badiale M. and Cingolani S. (1997). Semiclassical states of nonlinear Schrödinger equations. Arch. Rat. Mech. Anal. 140: 285–300

    Article  MATH  MathSciNet  Google Scholar 

  5. Ambrosetti A., Malchiodi A. and Secchi S. (2001). Multiplicity results for some nonlinear Schrödinger equations with potentials. Arch. Rat. Mech. Anal. 159: 253–271

    Article  MATH  MathSciNet  Google Scholar 

  6. Bartsch T. and Weth T. (2005). Three nodal solutions of singularly perturbed elliptic equations on domains without topology. Ann. Inst. H. Poincaré, Anal. Non Lin. 22: 259–281

    Article  MATH  MathSciNet  Google Scholar 

  7. Bartsch T. and Weth T. (2005). The effect of the domain’s configuration space on the number of nodal solutions of singularly perturbed elliptic equations. Top. Meth. Nonl. Anal. 26: 109–133

    MATH  MathSciNet  Google Scholar 

  8. Brezis H. and Lieb E. (1983). A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88: 486–490

    Article  MATH  MathSciNet  Google Scholar 

  9. Cerami G. and Passaseo D. (2003). The effect of concentrating potentials in some singularly perturbed problems. Calc. Var. 17: 257–281

    MATH  MathSciNet  Google Scholar 

  10. Chabrowski J. (1999). Weak convergence methods for semilinear elliptic equations. World Scientific Publishing Co. Inc., River Edge NJ

    MATH  Google Scholar 

  11. Chang K.C. (1993). Infinite dimensional morse theory and multiple solution problems. Birkhäuser, Boston

    MATH  Google Scholar 

  12. Cingolani S. and Lazzo M. (1997). Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations. Top. Meth. Nonl. Anal. 10: 397–408

    MathSciNet  Google Scholar 

  13. Clapp M. and Izquierdo G. (2001). Multiple positive symmetric solutions of a singularly perturbed elliptic equation. Top. Meth. Nonl. Anal. 18: 17–39

    MATH  MathSciNet  Google Scholar 

  14. Dancer E.N. and Yan S. (1999). A singularly perturbed elliptic problem in bounded domains with nontrivial topology. Adv. Diff. Eq. 4: 347–368

    MATH  MathSciNet  Google Scholar 

  15. Deimling K. (1977). Ordinary differential equations in banach spaces. Lect. Notes Math. 596. Springer, Berlin Heidelberg New York

    Google Scholar 

  16. Del Pino M. and Felmer P. (1996). Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. PDE 4: 121–137

    Article  MATH  MathSciNet  Google Scholar 

  17. Del Pino M. and Felmer P. (1998). Multi-peak bound states for a nonlinear Schrödinger equation. Ann. Inst. H. Poincaré. Anal. Non Lin. 15: 127–149

    Article  MATH  MathSciNet  Google Scholar 

  18. Dold A. (1972) Lectures on algebraic topology. Springer, Berlin Heidelberg Newyork

    MATH  Google Scholar 

  19. Dold A. (1976). The fixed point transfer of fibre-preserving maps. Math. Z. 148: 215–244

    Article  MATH  MathSciNet  Google Scholar 

  20. Floer A. and Weinstein A. (1986). Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69: 397–408

    Article  MATH  MathSciNet  Google Scholar 

  21. Husemoller D. (1966). Fibre bundles. Springer, Berlin Heidelberg

    MATH  Google Scholar 

  22. Li Y.Y. (1997). On a singularly perturbed elliptic equation. Adv. Diff. Eq. 2: 955–980

    MATH  Google Scholar 

  23. Lions P.L. (1984). The concentration-compactness principle in the calculus of variations. The locally compact case. Ann. Inst. Henri Poincaré, Anal. Non Lin. 1: 109–145

    MATH  Google Scholar 

  24. Massey W. (1978). Homology and cohomology theory. Marcel Dekker, New York

    MATH  Google Scholar 

  25. McCleary, J.: User’s guide to spectral sequences. Mathematics Lecture Series 12, Publish or Perish, Wilmington, Delaware (1985)

  26. Murayama M. (1983). On G-ANR’s and their G-homotopy types, Osaka J. Math. 20: 479–512

    MATH  MathSciNet  Google Scholar 

  27. Spanier E.H. (1966). Algebraic topology. McGraw-Hill, New York

    MATH  Google Scholar 

  28. Wang X. (1993). On concentration of positive bound states of nonlinear Schrödinger equations. Comm. Math. Phys. 153: 229–244

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica Clapp.

Additional information

Albrecht Dold und Dieter Puppe gewidmet: Diese im Jahr 2004 entstandene Arbeit war ursprünglich dem 50. Doktorjubiläum von Albrecht Dold und Dieter Puppe gewidmet. Beide promovierten im Jahr 1954 an der Universität Heidelberg bei Herbert Seifert. T.B. und M.C. verdanken ihnen sehr viel.

In memoriam Dieter Puppe: Dieter Puppe verstarb am 13.8.2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartsch, T., Clapp, M. & Weth, T. Configuration spaces, transfer, and 2-nodal solutions of a semiclassical nonlinear Schrödinger equation. Math. Ann. 338, 147–185 (2007). https://doi.org/10.1007/s00208-006-0071-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-006-0071-1

Mathematics Subject Classification (2000)

Navigation