Skip to main content
Log in

Space-time Wasserstein controls and Bakry–Ledoux type gradient estimates

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

The duality in Bakry–Émery’s gradient estimates and Wasserstein controls for heat distributions is extended to that in refined estimates in a high generality. As a result, we find an equivalent condition to Bakry–Ledoux’s refined gradient estimate involving an upper dimension bound. This new condition is described as a \(L^2\)-Wasserstein control for heat distributions at different times. The \(L^p\)-version of those estimates are studied on Riemannian manifolds via coupling method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Mondino, A., Rajala, T.: Riemannian Ricci curvature lower bounds in metric measure spaces with \(\sigma \)-finite measure. Trans. Amer. Math. Soc (to appear) (2012)

  2. Ambrosio, L., Gigli, N., Savaré, G.: Bakry–Émery curvature-dimension condition and Riemannian Ricci curvature bounds (preprint). arXiv: 1209.5786

  3. Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math. 195(2), 289–391 (2014). arXiv:1106.2090

  4. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J. 163(7), 1405–1490 (2014). arXiv:1109.0222

  5. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edn. Birkhäuser Verlag, Basel (2008)

    MATH  Google Scholar 

  6. Ambrosio, L., Gigli, N., Savaré, G.: Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev. Mat. Iberoam. 29(3), 969–996 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bacher, K., Sturm, K.-T.: Localization and tensorization properties of the curvature-dimension condition for metric measure spaces. J. Funct. Anal. 259(1), 28–56 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bakry, D., Sobolev, : On, Sobolev and logarithmic Sobolev inequalities for Markov semigroups, New trends in stochastic analysis Charingworth. World Sci. Publ. (River Edge) 1997, 43–75 (1994)

    Google Scholar 

  9. Bakry, D.: Functional inequalities for Markov semigroups. Probability measures on groups: recent directions and trends (Mumbai). Tata Inst. Fund. Res. 91–147 (2006)

  10. Bakry, D., Émery, M.: Diffusions hypercontractives. Séminaire de probabilités, XIX, 1983/1984. In: Lecture Notes in Mathematics, vol 1123, pp. 177–206. Springer, Berlin (1985)

  11. Bakry, D., Gentil, I., Ledoux, M.: Analysis and geometry of Markov diffusion operators. Grundlehren der Mathematischen Wissenschaften, vol 348. Springer-Verlag, New York (2014)

  12. Bakry, D., Gentil, I., Ledoux, M.: On Harnack inequalities and optimal transport. Ann. Sc. Norm. Super. Pisa (to appear). arXiv:1210.4650

  13. Bakry, D., Ledoux, M.: Sobolev inequalities and Myers’s diameter theorem for an abstract Markov generator. Duke Math. J. 85, 253–270 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bakry, D., Ledoux, M.: A logarithmic Sobolev form of the Li–Yau parabolic inequality. Rev. Mat. Iberoam. 22(2), 683–702 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Balogh, Z.M., Engoulatov, A., Hunziker, L., Maasalo, O.E.: Functional inequalities and Hamilton–Jacobi equations in geodesic spaces. Potential Anal. 36(2), 317–337 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bogachev, V.I.: Measure Theory I, II. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  17. Bolley, F., Gentil, I., Guillin, A.: Dimensional contraction via Markov transportation distance. J. Lond. Math. Soc (to appear). arXiv:1304.1929

  18. Cranston, M.: Gradient estimates on manifolds using coupling. J. Funct. Anal. 99(1), 110–124 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Erbar, M., Kuwada, K., Sturm, K.-T.: On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces (preprint). arXiv:1303.4382

  20. Gozlan, N., Roberto, C., Samson, P.-M.: Hamilton–Jacobi equations on metric spaces and transport entropy inequalities. Rev. Mat. Iberoam. 30(1), 133–163 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hsu, E.P.: Stochastic analysis on manifolds. Graduate Studies in Mathematics, vol. 38. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  22. Kendall, W.: Nonnegative Ricci curvature and the Brownian coupling property. Stochastics 19, 111–129 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kuwada, K.: Couplings of the Brownian motion via discrete approximation under lower Ricci curvature bounds. Probabilistic approach to geometry. Adv. Stud. Pure Math. Math. Soc. Jpn. 57, 273–292 (2010)

  24. Kuwada, K.: Duality on gradient estimates and Wasserstein controls. J. Funct. Anal. 258(11), 3758–3774 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kuwada, K.: Convergence of time-inhomogeneous geodesic random walks and its application to coupling methods. Ann. Probab. 40(5), 1945–1979 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kuwada, K.: A probabilistic approach to the maximal diameter theorem. Math. Nachr. 286(4), 374–378 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kuwada, K.: Gradient estimate for Markov kernels. Wasserstein control and Hopf–Lax formula. Potential theory and related fields. RIMS Kôkyûroku Bessatsu B43, 61–80 (2013)

    MATH  Google Scholar 

  28. Kuwada, K., Philipowski, R.: Coupling of Brownian motion and Perelman’s \({\cal L}\)-functional. J. Funct. Anal. 260(9), 2742–2766 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kuwada, K., Sturm, K.-T.: Monotonicity of time-dependent transportation costs and coupling by reflection. Potential Anal. 39(3), 231–263 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ledoux, M.: The geometry of Markov diffusion generators. Ann. Fac. Sci. Toulouse Math. (6) 9(2), 305–366 (2000)

  31. Lisini, S.: Characterization of absolutely continuous curves in Wasserstein spaces. Calc. Var. Partial Differ. Equ. 28(1), 85–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169(3), 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Neel, R.W., Popescu, I.: A stochastic target approach to Ricci flow on surfaces (preprint). arXiv:1209.4150

  34. Qian, Z.-M.: On conservation of probability and the Feller property. Ann. Prob. 24(1), 280–292 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rajala, T.: Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm. J. Funct. Anal. 263(4), 896–924 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Savaré, G.: Self-improvement of the Bakry–Émery condition and Wasserstein contraction of the heat flow in RCD(\(K,\infty \)) metric measure spaces. Disc. Cont. Dyn. Syst. 34(4), 1641–1661 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sturm, K.-T.: On the geometry of metric measure spaces I. Acta. Math. 196(1), 65–131 (2006)

  38. Sturm, K.-T.: On the geometry of metric measure spaces II. Acta. Math. 196(1), 133–177 (2006)

  39. Topping, P.: \({\cal L}\)-optimal transportation for Ricci flow. J. Reine Angew. Math. 636, 93–122 (2009)

    MathSciNet  MATH  Google Scholar 

  40. Villani, C.: Optimal transport, old and new. Grundlehren der Mathematischen Wissenschaften, vol 338. Springer-Verlag, New York (2008)

  41. von Renesse, M.-K.: Intrinsic coupling on Riemannian manifolds and polyhedra. Electron. J. Probab. 9(14), 411–435 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, F.-Y.: Functional inequalities, Markov semigroups, and spectral theory. Mathematics Monograph Series 4. Science Press, Beijing (2005)

    Google Scholar 

  43. Wang, F.-Y.: Equivalent semigroup properties for curvature-dimension condition. Bull. Sci. Math. 135(6–7), 803–815 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, F.-Y.: Analysis for Diffusion Processes on Riemannian Manifolds. World Scientific Publishing, Hackensack (2014)

    MATH  Google Scholar 

Download references

Acknowledgments

The author would like to tell his gratitude to the anonymous referee. His/Her comments help the author to improve the quality of the paper. Especially, Proposition 4.4 and Remark 4.6 are essentially due to the comment. This work is partially supported by the Japan Society for the Promotion of Science Grant-in-Aid for Young Scientists (B) 22740083.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazumasa Kuwada.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuwada, K. Space-time Wasserstein controls and Bakry–Ledoux type gradient estimates. Calc. Var. 54, 127–161 (2015). https://doi.org/10.1007/s00526-014-0781-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-014-0781-2

Mathematics Subject Classification

Navigation