Skip to main content
Log in

Monotonicity of Time-Dependent Transportation Costs and Coupling by Reflection

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Based on a study of the coupling by reflection of diffusion processes, a new monotonicity in time of a time-dependent transportation cost between heat distribution is shown under Bakry-Émery’s curvature-dimension condition on a Riemannian manifold. The cost function comes from the total variation between heat distributions on spaceforms. As a corollary, we obtain a comparison theorem for the total variation between heat distributions. In addition, we show that our monotonicity is stable under the Gromov-Hausdorff convergence of the underlying space under a uniform curvature-dimension and diameter bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. arXiv:1106.2090 (2012, preprint)

  2. Ambrosio, L., Gigli, N., Savaré, G.: Metric measure spaces with Riemannian Ricci curvature bounded from below. arXiv:1109.0222 (2012, preprint)

  3. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in metric spaces and in the space of probability measures, 2nd edn. Birkhäuser Verlag, Basel (2008)

    MATH  Google Scholar 

  4. Bakry, D.: On Sobolev and Logarithmic Sobolev Inequalities for Markov Semigroups, New Trends in Stochastic Analysis (Charingworth, 1994), pp. 43–75 World Sci. Publ. River Edge, NJ (1997)

    Google Scholar 

  5. Burago, D., Burago, Yu., Ivanov, S.: A course in metric geometry, Graduate studies in mathematics, 33. American mathematical society, Providence, RI (2001)

    Google Scholar 

  6. Cranston, M.: Gradient estimates on manifolds using coupling. J. Funct. Anal. 99(1), 110–124 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eberle, A.: Reflection coupling and Wasserstein contractivity without convexity. C. R. Math. Acad. Sci. Paris 349(19–20), 1101–1104 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Erbar, M.: The heat equation on manifolds as a gradient flow in the Wasserstein space. Ann. Inst. Henri Poincaré Probab. Stat. 46(1), 1–23 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gangbo, W., McCann, R.J.: The geometry of optimal transportation. Acta Math. 177(2), 113–161 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gigli, N.: On the heat flow on metric measure spaces: existence, uniqueness and stability. Calc. Var. Partial Differ. Equ. 39(1–2), 101–120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gigli, N., Kuwada, K., Ohta, S.: Heat flow on Alexandrov spaces. Comm. Pure. Appl. Math. 66(3), 307–331 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hsu, E.P., Sturm, K.-Th.: Maximal coupling of Euclidean Brownian motions. http://www.math.northwestern.edu/~ehsu/Research.html (2012). Accessed 4 January 2013

  13. Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes, 2nd edn. North-Holland Mathematical Library, 24. North-Holland Publishing Co., Amsterdam-New York; Kodansha, Ltd., Tokyo (1989)

    MATH  Google Scholar 

  14. Itô, K., McKean, H.P.: Diffusion processes and their sample paths, second printing edn. Die Grundlehren der mathematischen Wissenschaften, Band 125. Springer, Berlin-New York (1974)

    Google Scholar 

  15. Kendall, W.: Nonnegative Ricci curvature and the Brownian coupling property. Stochastics 19, 111–129 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kendall, W.S.: From stochastic parallel transport to harmonic maps. New directions in Dirichlet forms, AMS/IP Studies in Advanced Mathematics, 8, pp. 49–115. Amer. Math. Soc., Providence, RI; International Press, Cambridge, MA (1998)

  17. Kuwada, K.: A probabilistic approach to the maximal diameter theorem. Math. Nachr. (2012). doi:10.1002/mana.201100330

    Google Scholar 

  18. Kuwada, K.: On uniqueness of maximal coupling for diffusion processes with a reflection. J. Theor. Probab. 20(4), 935–957 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kuwada, K.: Couplings of the Brownian motion via discrete apporoximation under lower Ricci curvature bounds. Probabilistic Approach to Geometry (Tokyo). Adv. Stud. Pure Math., vol. 57, pp. 273–292, Math. Soc. Japan (2010)

  20. Kuwada, K.: Duality on gradient estimates and Wasserstein controls. J. Funct. Anal. 258(11), 3758–3774 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kuwada, K.: Convergence of time-inhomogeneous geodesic random walks and its application to coupling methods. Ann. Probab. 40(5), 1945–1979 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ledoux, M.: The geometry of Markov diffusion generators. Ann. Fac. Sci. Toulouse Math. (6) 9(2), 305–366 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lindvall, T.: Lectures on the Coupling Method. Wiley, Chichester and New York (1992)

    MATH  Google Scholar 

  24. Lindvall, T., Rogers, L.C.G.: Coupling of multidimensional diffusions by reflection. Ann. Probab. 14(3), 860–872 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169(3), 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Matsumoto, H., Yor, M.: Exponential functional of Brownian motion, I.: probability laws at fixed time. Probab. Surv. 2, 312–347 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Matsumoto, H., Yor, M.: Exponential functional of Brownian motion, II.: some related diffusion processes. Probab. Surv. 2, 348–384 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26(1–2), 101–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pauwels, E.J., Rogers, L.C.G.: Skew-product decompositions of Brownian motions. Geometry of random motion (Ithaca, N.Y., 1987). Contemp. Math., vol. 73, pp. 237–262. Amer. Math. Soc., Providence, RI (1988)

  30. Sturm, K.-Th.: A semigroup approach to harmonic maps. Potential Anal. 23(3), 225–277 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sturm, K.-Th.: On the geometry of metric measure spaces. I. Acta. Math. 196(1), 65–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sturm, K.-Th.: On the geometry of metric measure spaces. II. Acta. Math. 196(1), 133–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Szegő, G.: Orthogonal polynomials, 4th edn. Colloquium Publications, vol. XXIII. American Mathematical Society, Providence, R.I. (1975)

  34. Villani, C.: Topics in optimal transportations. Graduate studies in mathematics, vol. 58. American mathematical society, Providence, RI (2003)

    Google Scholar 

  35. Villani, C.: Optimal transport, old and new. Grundlehren der Mathematischen Wissenschaften, vol. 338. Springer (2008)

  36. von Renesse, M.-K., Sturm, K.-Th.: Transport inequalities, gradient estimates, entropy and Ricci curvature. Comm. Pure. Appl. Math. 58(7), 923–940 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, F.-Y.: Equivalent semigroup properties for curvature-dimension condition. Bull. Sci. Math. 135(6–7), 803–815 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, F.-Y.: Functional inequalities, Markov semigroups, and spectral theory. Mathematics Monograph Series 4. Science Press, Beijing, China (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazumasa Kuwada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuwada, K., Sturm, KT. Monotonicity of Time-Dependent Transportation Costs and Coupling by Reflection. Potential Anal 39, 231–263 (2013). https://doi.org/10.1007/s11118-012-9327-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-012-9327-4

Keywords

Mathematics Subject Classifications (2010)

Navigation