Skip to main content
Log in

Transportation onto log-Lipschitz perturbations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We establish sufficient conditions for the existence of globally Lipschitz transport maps between probability measures and their log-Lipschitz perturbations, with dimension-free bounds. Our results include Gaussian measures on Euclidean spaces and uniform measures on spheres as source measures. More generally, we prove results for source measures on manifolds satisfying strong curvature assumptions. These seem to be the first examples of dimension-free Lipschitz transport maps in non-Euclidean settings, which are moreover sharp on the sphere. We also present some applications to functional inequalities, including a new dimension-free Gaussian isoperimetric inequality for log-Lipschitz perturbations of the standard Gaussian measure. Our proofs are based on the Langevin flow construction of transport maps of Kim and Milman.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availability

We do not make use of or generate data sets.

Notes

  1. The existence of solutions to the above equations, and of the limits, is non-trivial in general. These issues are discussed in length in [1, 14, 24] for the various settings we consider. In particular, the convexity and curvature assumptions we shall enforce in the coming proofs are enough to guarantee that all maps under consideration are well-defined.

  2. We rescale the generator of the heat equation so our t corresponds to 2t in [28].

  3. We rescale the generator of the heat equation so our t corresponds to 2t in [28].

References

  1. Kim, Y.-H., Milman, E.: A generalization of Caffarelli’s contraction theorem via (reverse) heat flow. Math. Ann. 354(3), 827–862 (2012)

    Article  MathSciNet  Google Scholar 

  2. Caffarelli, L.A.: Monotonicity properties of optimal transportation and the FKG and related inequalities. Comm. Math. Phys. 214(3), 547–563 (2000)

    Article  MathSciNet  Google Scholar 

  3. Fathi, M., Gozlan, N., Prod’homme, M.: A proof of the Caffarelli contraction theorem via entropic regularization. Calc. Var. Part. Differ. Equ. 59(3), 1–18 (2020)

    Article  MathSciNet  Google Scholar 

  4. Chewi, S., Pooladian, A.-A.: An entropic generalization of Caffarelli’s contraction theorem via covariance inequalities (2022). arXiv preprint arXiv:2203.04954

  5. Kolesnikov, A.V.: On Sobolev regularity of mass transport and transportation inequalities. Theory Probab. Appl. 57(2), 243–264 (2013)

    Article  MathSciNet  Google Scholar 

  6. Cordero-Erausquin, D.: Some applications of mass transport to Gaussian-type inequalities. Arch. Ration. Mech. Anal. 161(3), 257–269 (2002)

    Article  MathSciNet  Google Scholar 

  7. Hargé, G.: A particular case of correlation inequality for the Gaussian measure. Ann. Probab. 27(4), 1939–1951 (1999)

    Article  MathSciNet  Google Scholar 

  8. Milman, E.: Spectral estimates, contractions and hypercontractivity. J. Spectr. Theory 8(2), 669–714 (2018)

    Article  MathSciNet  Google Scholar 

  9. Mikulincer, D.: A CLT in Stein’s distance for generalized Wishart matrices and higher-order tensors. Int. Math. Res. Not. IMRN 10, 7839–7872 (2022)

    Article  MathSciNet  Google Scholar 

  10. Colombo, M., Figalli, A., Jhaveri, Y.: Lipschitz changes of variables between perturbations of log-concave measures. Ann. Sc. Norm. Super. Pisa Cl. Sci. 17(4), 1491–1519 (2017)

    MathSciNet  Google Scholar 

  11. Kolesnikov, A.V.: Mass transportation and contractions (2011). arXiv preprint arXiv:1103.1479

  12. Tanana, Anastasiya: Comparison of transport map generated by heat flow interpolation and the optimal transport Brenier map. Commun. Contemp. Math. 23(6), 2050025 (2021)

  13. Lavenant, H., Santambrogio, F.: The flow map of the Fokker-Planck equation does not provide optimal transport. Appl. Math. Lett. 133, 108225 (2022)

    Article  MathSciNet  Google Scholar 

  14. Mikulincer, D., Shenfeld, Y.: On the Lipschitz properties of transportation along heat flows. GAFA Seminar Notes, To appear

  15. Neeman, J.: Lipschitz changes of variables via heat flow (2022). arXiv preprint arXiv:2201.03403

  16. Klartag, B., Putterman, E.: Spectral monotonicity under gaussian convolution. Ann. Fac. Sci. Toulouse Math, To appear

  17. Shenfeld, Y.: Exact renormalization groups and transportation of measures (2022). arXiv preprint arXiv:2205.01642

  18. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in neural information processing systems, vol. 33, pp. 6840–6851. Curran Associates Inc (2020)

    Google Scholar 

  19. De Bortoli, V., Thornton, J., Heng, J., Doucet, A.: Diffusion Schrödinger bridge with applications to score-based generative modeling. In: Beygelzimer, A., Dauphin, Y., Liang, P., Wortman Vaughan, J. (eds.) Advances in Neural Information Processing Systems (2021)

  20. Beck, T., Jerison, D.: Jerison, David: The Friedland-Hayman inequality and Caffarelli’s contraction theorem. J. Math. Phys. 62(10), 101504 (2021)

    Article  Google Scholar 

  21. Figalli, Alessio: Regularity of optimal transport maps [after Ma-Trudinger-Wang and Loeper]. Number 332, pages Exp. No. 1009, ix, 341–368. Séminaire Bourbaki. Volume 2008/2009. Exposés 997–1011 (2010)

  22. Bakry, D., Gentil, I., Ledoux, M.: Analysis and geometry of Markov diffusion operators. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 348. Springer, Cham (2014)

    Google Scholar 

  23. Hsu, E.P.: Stochastic analysis on manifolds. Graduate Studies in Mathematics, vol. 38. American Mathematical Society, Providence (2002)

    Google Scholar 

  24. Otto, F., Villani, C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173(2), 361–400 (2000)

    Article  MathSciNet  Google Scholar 

  25. Villani, C.: Optimal transport: old and new, vol. 338. Springer, Berlin (2008)

    Google Scholar 

  26. David Elworthy, K., Li, X.-M.: Formulae for the derivatives of heat semigroups. J. Funct. Anal. 125(1), 252–286 (1994)

    Article  MathSciNet  Google Scholar 

  27. Thompson, J.: Approximation of Riemannian measures by Stein’s method (2020). arXiv preprint arXiv:2001.09910

  28. Cheng, L.-J., Wang, F.-Y., Thalmaier, A.: Some inequalities on Riemannian manifolds linking entropy, Fisher information, Stein discrepancy and Wasserstein distance (2021). arXiv preprint arXiv:2108.12755

  29. Bismut, J.-M.: Martingales, the Malliavin calculus and hypoellipticity under general Hörmander’s conditions. Z. Wahrsch. Verw. Gebiete 56(4), 469–505 (1981)

    Article  MathSciNet  Google Scholar 

  30. Milman, E.: Reverse Hölder inequalities for log-Lipschitz functions. Pure Appl. Funct. Anal. 8(1), 297–310 (2023)

    MathSciNet  Google Scholar 

  31. Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus, volume 113 of Graduate Texts in Mathematics, 2nd edn. Springer, New York (1991)

    Google Scholar 

  32. Bakry, D., Ledoux, M.: Lévy-Gromov’s isoperimetric inequality for an infinite-dimensional diffusion generator. Invent. Math. 123(2), 259–281 (1996)

    Article  MathSciNet  Google Scholar 

  33. Bobkov, S.G.: An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space. Ann. Probab. 25(1), 206–214 (1997)

    Article  MathSciNet  Google Scholar 

  34. Bardet, J.-B., Gozlan, N., Malrieu, F., Zitt, P.-A.: Functional inequalities for Gaussian convolutions of compactly supported measures: explicit bounds and dimension dependence. Bernoulli 24(1), 333–353 (2018)

    Article  MathSciNet  Google Scholar 

  35. Barthe, F., Kolesnikov, A.V.: Mass transport and variants of the logarithmic Sobolev inequality. J. Geom. Anal. 18(4), 921–979 (2008)

    Article  MathSciNet  Google Scholar 

  36. Aida, S., Shigekawa, I.: Logarithmic Sobolev inequalities and spectral gaps: perturbation theory. J. Funct. Anal. 126(2), 448–475 (1994)

    Article  MathSciNet  Google Scholar 

  37. Ivanisvili, P., Russell, R.: Exponential integrability for log-concave measures (2020). arXiv preprint arXiv:2004.09704

  38. Cianchi, A., Musil, V., Pick, L.: Moser inequalities in Gauss space. Math. Ann. 377(3–4), 1265–1312 (2020)

    Article  MathSciNet  Google Scholar 

  39. Colombo, M., Fathi, M.: Bounds on optimal transport maps onto log-concave measures. J. Differ. Equ. 271, 1007–1022 (2021)

    Article  MathSciNet  Google Scholar 

  40. Gorham, J., Duncan, A.B., Vollmer, S.J., Mackey, L.: Measuring sample quality with diffusions. Ann. Appl. Probab. 29(5), 2884–2928 (2019)

    Article  MathSciNet  Google Scholar 

  41. Fang, X., Shao, Q.-M., Lihu, X.: Multivariate approximations in Wasserstein distance by Stein’s method and Bismut’s formula. Probab. Theory Relat. Fields 174(3–4), 945–979 (2019)

    Article  MathSciNet  Google Scholar 

  42. Fang, X., Shao, Q.-M., Lihu, X.: Correction to: multivariate approximations in Wasserstein distance by Stein’s method and Bismut’s formula. Probab. Theory Relat. Fields 175(3–4), 1177–1181 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the contributions of Joe Neeman who was involved in the earlier stages of this work. In particular, the example showing Theorem 1 is sharp is due to him. We also thank Patrick Cattiaux, Daniel Lacker, Michel Ledoux, and Lorenzo Schiavo for useful discussions. In addition, we thank the ananoymous referee for their helpful comments. M.F. was supported by the Projects MESA (ANR-18-CE40-006) and EFI (ANR-17-CE40-0030) of the French National Research Agency (ANR). This material is based upon work supported by the National Science Foundation under Award Number 2002022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Fathi.

Additional information

Communicated by Andrea Mondino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathi, M., Mikulincer, D. & Shenfeld, Y. Transportation onto log-Lipschitz perturbations. Calc. Var. 63, 61 (2024). https://doi.org/10.1007/s00526-023-02652-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-023-02652-x

Mathematics Subject Classification

Navigation