Skip to main content
Log in

Lag quasi-synchronization for memristive neural networks with switching jumps mismatch

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper is concerned with the lag quasi-synchronization for memristive neural networks (MNNs) with switching jumps mismatch. The inherent characteristic of MNNs is fully taken into account. Based on Lyapunov–Krasovskii functional and differential inclusions theory, intermittent control approach is utilized to realize the exponential lag quasi-synchronization of the considered model. The error level is closely related to the switching jumps. In addition, a simple design procedure of controller is presented to ensure that the synchronization error between the master system and the slave system converges to a predetermined level. Two numerical examples are offered to show the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chua L (1971) Memristor-the missing circuit element. IEEE Trans Circuit Theory 18(5):507–519

    Article  Google Scholar 

  2. Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453(7191):80–83

    Article  Google Scholar 

  3. Corinto F, Ascoli A, Gilli M (2011) Nonlinear dynamics of memristor oscillators. IEEE Trans Circuits Syst I Regul Pap 58(6):1323–1336

    Article  MathSciNet  Google Scholar 

  4. Hu M, Li H, Chen Y, Wu Q, Rose G, Linderman R (2014) Memristor crossbar-based neuromorphic computing system: a case study. IEEE Trans Neural Netw Learn Syst 25(10):1864–1878

    Article  Google Scholar 

  5. Duan S, Hu X, Dong Z, Wang L, Mazumder P (2015) Memristor-based cellular nonlinear/neural network: design, analysis, and applications. IEEE Trans Neural Netw Learn Syst 26(6):1202–1213

    Article  MathSciNet  Google Scholar 

  6. Wang Z, Zhang H, Jiang B (2011) LMI-based approach for global asymptotic stability analysis of recurrent neural networks with various delays and structures. IEEE Trans Neural Netw 22(7):1032–1045

    Article  Google Scholar 

  7. Wang Z, Liu L, Shan Q, Zhang H (2015) Stability criteria for recurrent neural networks with time-varying delay based on secondary delay partitioning method. IEEE Trans Neural Netw Learn Syst 26(10):2589–2595

    Article  MathSciNet  Google Scholar 

  8. Wang Z, Zhang H (2010) Global asymptotic stability of reaction-diffusion Cohen–Grossberg neural networks with continuously distributed delays. IEEE Trans Neural Netw 21(1):39–49

    Article  Google Scholar 

  9. Wang Z, Ding S, Huang Z, Zhang H (2015) Exponential stability and stabilization of delayed memristive neural networks based on quadratic convex combination method. IEEE Trans Neural Netw Learn Syst. doi:10.1109/TNNLS.2015.2485259

    Google Scholar 

  10. Guo Z, Wang J, Yan Z (2014) Attractivity analysis of memristor-based cellular neural networks with time-varying delays. IEEE Trans Neural Netw Learn Syst 25(4):704–717

    Article  Google Scholar 

  11. Li R, Cao J (2015) Dissipativity analysis of memristive neural networks with time-varying delays and randomly occurring uncertainties. Math Meth Appl Sci. doi:10.1002/mma.3738

    MATH  Google Scholar 

  12. Wen S, Zeng Z, Huang T, Zhang Y (2014) Exponential adaptive lag synchronization of memristive neural networks via fuzzy method and applications in pseudo random number generator. IEEE Trans Fuzzy Syst 22(6):1704–1713

    Article  Google Scholar 

  13. Zhang G, Hu J, Shen Y (2015) Exponential lag synchronization for delayed memristive recurrent neural networks. Neurocomputing 154:86–93

    Article  Google Scholar 

  14. Wen S, Zeng Z, Huang T (2013) Dynamic behaviors of memristor-based delayed recurrent networks. Neural Comput Appl 23(3–4):815–821

    Article  Google Scholar 

  15. Wu A, Zeng Z, Chen J (2014) Analysis and design of winner-take-all behavior based on a novel memristive neural network. Neural Comput Appl 24(7–8):1595–1600

    Article  Google Scholar 

  16. Chen J, Zeng Z, Jiang P (2014) On the periodic dynamics of a memristor-based neural networks with time-varying delays. Inf Sci 279(20):358–373

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang X, Li C, Huang T, Duan S (2014) Global exponential stability of a class of memristive neural networks with time-varying delays. Neural Comput Appl 24(7–8):1707–1715

    Article  Google Scholar 

  18. Mathiyalagan K, Anbuvithya R, Sakthivel R, Park J, Prakash P (2015) Reliable stabilization for memristor-based recurrent neural networks with time-varying delays. Neurocomputing 153:140–147

    Article  Google Scholar 

  19. Guo Z, Wang J, Yan Z (2015) Global exponential synchronization of two memristor-based recurrent neural networks with time delays via static or dynamic coupling. IEEE Trans Syst Man Cyber Syst 45(2):235–249

    Article  Google Scholar 

  20. Ding S, Wang Z (2015) Stochastic exponential synchronization control of memristive neural networks with multiple time-varying delays. Neurocomputing 162:16–25

    Article  Google Scholar 

  21. Wu H, Zhang L, Ding S, Guo X, Wang L (2013) Complete periodic synchronization of memristor-based neural networks with time-varying delays. Discrete Dyn Nat Soc 2013:1–12, ID 140153

  22. Wang G, Shen Y (2014) Exponential synchronization of coupled memristive neural networks with time delays. Neural Comput Appl 24(6):1421–1430

    Article  Google Scholar 

  23. Zhang G, Shen Y (2014) Exponential synchronization of delayed memristor-based chaotic neural networks via periodically intermittent control. Neural Netw 55:1–10

    Article  MATH  Google Scholar 

  24. Wang L, Shen Y, Yin Q, Zhang G (2015) Adaptive synchronization of memristor-based neural networks with time-varying delays. IEEE Trans Neural Netw Learn Syst 26(9):2033–2042

    Article  MathSciNet  Google Scholar 

  25. Chandrasekar A, Rakkiyappan R, Cao J, Lakshmanand S (2014) Synchronization of memristor-based recurrent neural networks with two delay components based on second-order reciprocally convex approach. Neural Netw 57:79–93

    Article  MATH  Google Scholar 

  26. Mathiyalagan K, Park J, Sakthivel R (2015) Synchronization for delayed memristive BAM neural networks using impulsive control with random nonlinearities. Appl Math Comput 259:967–979

    MathSciNet  Google Scholar 

  27. Anbuvithya R, Mathiyalagan K, Sakthivel R, Prakasha P (2015) Non-fragile synchronization of memristive BAM networks with random feedback gain fluctuations. Commun Nonlinear Sci Numer Simul 29(1–3):427–440

    Article  MathSciNet  Google Scholar 

  28. Wang W, Li L, Peng H, Xiao J, Yang Y (2014) Synchronization control of memristor-based recurrent neural networks with perturbations. Neural Netw 53:8–14

    Article  MATH  Google Scholar 

  29. Liu X, Chen T, Cao J, Lu W (2011) Dissipativity and quasi-synchronization for neural networks with discontinuous activations and parameter mismatches. Neural Netw 24(10):1013–1021

    Article  MATH  Google Scholar 

  30. Yang X, Cao J (2013) Exponential synchronization of delayed neural networks with discontinuous activations. IEEE Trans Circuits Syst I 60(9):2431–2439

    Article  MathSciNet  Google Scholar 

  31. Chua L (2011) Resistance switching memories are memristors. Appl Phys A 102:765–783

    Article  MATH  Google Scholar 

  32. Li N, Cao J (2014) Periodically intermittent control on robust exponential synchronization for switched interval coupled networks. Neurocomputing 131:52–58

    Article  Google Scholar 

  33. Huang J, Li C, Huang T, He X (2014) Finite-time lag synchronization of delayed neural networks. Neurocomputing 139(2):145–149

    Article  Google Scholar 

  34. Zhang H, Ma T, Yu W, Fu J (2008) A practical approach to robust impulsive lag synchronization between different chaotic systems. Chin Phys B 17(10):3616–3622

    Article  Google Scholar 

  35. He W, Qian F, Han Q, Cao J (2011) Lag quasi-synchronization of coupled delayed systems with parameter mismatch. IEEE Trans Circuits Syst I 58(6):1345–1357

    Article  MathSciNet  Google Scholar 

  36. Clarke F, Ledyaev Y, Stem R, Wolenski R (1998) Nonsmooth analysis and control theory. Springer, New York

    Google Scholar 

  37. Aubin J, Cellina A (1984) Differential inclusions. Springer, Berlin

    Book  MATH  Google Scholar 

  38. Filippov A (1988) Differential equations with discontinuous righthand sides. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  39. Vidyasagar M (1993) Nonlinear system analysis. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  40. Sakthivel R, Anbuvithya R, Mathiyalagan K, Prakash P (2015) Combined \(H_\infty\) and passivity state estimation of memristive neural networks with random gain fluctuations. Neurocomputing 168:1111–1120

    Article  Google Scholar 

Download references

Acknowledgments

Foundation This work was supported by the National Natural Science Foundation of China (Grant Nos. 61473070, 61433004), the Fundamental Research Funds for the Central Universities (Grant Nos. N130504002, N150406003, and N130104001) and SAPI Fundamental Research Funds (Grant No. 2013ZCX01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanshan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, S., Wang, Z. Lag quasi-synchronization for memristive neural networks with switching jumps mismatch. Neural Comput & Applic 28, 4011–4022 (2017). https://doi.org/10.1007/s00521-016-2291-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2291-y

Keywords

Navigation