Skip to main content
Log in

Initial-condition-controlled synchronization behaviors in inductively coupled memristive Chua’s circuits

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Field coupling via capacitor, inductor, or memristor has been applied for synchronization and consensus between nonlinear circuits and neural systems. The initial-condition-controlled synchronization behaviors therein are attractive to chaos-based applications and have not been intensively explored. In this paper, inductor coupling is applied between two memristive Chua’s circuits to investigate the synchronization behaviors controlled by the coupling inductor and the initial conditions of each coupled terminals. Based on the dimensionless model, the error functions and similarity indexes for memristive and non-memristive variables are calculated to evaluate the synchronicity of the inductively coupled system. The results show that complete, lag, and parallel-offset synchronization behaviors can be realized by selecting different inductance and initial condition values for the coupling inductor. Moreover, the synchronization behaviors can be flexibly tuned from two coupled terminals by adjusting their initial conditions. Experimental verifications are finally performed using FPGA-based digital platform. This synchronization scheme and feature may promote the implementations of chaos-based applications for multi-stable dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated during the current study.

References

  1. Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., Zhou, C.S.: The synchronization of chaotic systems. Phys. Rep. 366(1–2), 1–101 (2002)

    Article  MathSciNet  Google Scholar 

  2. Lin, H., Wang, C., Sun, J., Zhang, X., Sun, Y., Iu, H.H.C.: Memristor-coupled asymmetric neural networks: bionic modeling, chaotic dynamics analysis and encryption application. Chaos Solitons Fractals 166, 112905 (2023)

    Article  MathSciNet  Google Scholar 

  3. Shi, L., Liu, Q., Shao, J., Cheng, Y., Zheng, W.: A cooperation-competition evolutionary dynamic model over signed networks. IEEE Trans. Automat. Contr. 68(12), 7927–7934 (2023)

    Article  MathSciNet  Google Scholar 

  4. Tang, L., Wu, X., Lü, J., Lu, J., D’Souza, R.M.: Master stability functions for complete, intralayer, and interlayer synchronization in multiplex networks of coupled Rössler oscillators. Phys. Rev. E 99(1), 012304 (2019)

    Article  Google Scholar 

  5. Fang, X., Duan, S., Wang, L.: Memristive FHN spiking neuron model and brain-inspired threshold logic computing. Neurocomputing 517, 93–105 (2023)

    Article  Google Scholar 

  6. Aydın, S.: Investigation of global brain dynamics depending on emotion regulation strategies indicated by graph theoretical brain network measures at system level. Cogn. Neurodyn. 17(2), 331–344 (2023)

    Article  Google Scholar 

  7. Sun, H., Radicchi, F., Kurths, J., Bianconi, G.: The dynamic nature of percolation on networks with triadic interactions. Nat. Commun. 14(1), 1308 (2023)

    Article  Google Scholar 

  8. Chen, M., Xue, W., Luo, X., Zhang, Y., Wu, H.: Effects of coupling memristors on synchronization of two identical memristive Chua’s systems. Chaos Solitons Fractals 174, 113780 (2023)

    Article  MathSciNet  Google Scholar 

  9. Ma, R., Wu, J., Wu, K., Pan, X.: Adaptive fixed-time synchronization of Lorenz systems with application in chaotic finance systems. Nonlinear Dyn. 109(4), 3145–3156 (2022)

    Article  Google Scholar 

  10. Bayani, A., Jafari, S., Azarnoush, H., Nazarimehr, F., Boccaletti, S., Perc, M.: Explosive synchronization dependence on initial conditions: the minimal Kuramoto model. Chaos Solitons Fractals 169, 113243 (2023)

    Article  Google Scholar 

  11. Xu, Q., Liu, T., Ding, S., Bao, H., Li, Z., Chen, B.: Extreme multistability and phase synchronization in a heterogeneous bi-neuron Rulkov network with memristive electromagnetic induction. Cogn. Neurodyn. 17(3), 755–766 (2023)

    Article  Google Scholar 

  12. Shepelev, I.A., Bukh, A.V., Vadivasova, T.E., Anishchenko, V.S.: Synchronization effects for dissipative and inertial coupling between multiplex lattices. Commun. Nonlinear Sci. Numer. Simul. 93, 105489 (2021)

    Article  MathSciNet  Google Scholar 

  13. Chowdhury, S.N., Rakshit, S., Buldu, J.M., Ghosh, D., Hens, C.: Antiphase synchronization in multiplex networks with attractive and repulsive interactions. Phys. Rev. E 103(3), 032310 (2021)

    Article  MathSciNet  Google Scholar 

  14. Shepelev, I.A., Muni, S.S., Schöll, E., Strelkova, G.I.: Repulsive inter-layer coupling induces anti-phase synchronization. Chaos 31(6), 06316 (2021)

    Article  MathSciNet  Google Scholar 

  15. Marković, D.: Synchronization by memristors. Nat. Mater. 21(1), 4–5 (2022)

    Article  Google Scholar 

  16. Zhang, Y., He, Y., Long, F., Zhang, C.: Mixed-delay-based augmented functional for sampled-data synchronization of delayed neural networks with communication delay. IEEE Trans. Neural Netw. Learn. Syst. 35(2), 1847–1856 (2024)

    Article  MathSciNet  Google Scholar 

  17. Sun, J., Wang, Y., Liu, P., Wen, S., Wang, Y.: Memristor-based neural network circuit with multimode generalization and differentiation on pavlov associative memory. IEEE Trans. Cybern. 53(5), 3351–3362 (2023)

    Article  Google Scholar 

  18. Eftekhari, L., Amirian, M.M.: Stability analysis of fractional order memristor synapse-coupled hopfield neural network with ring structure. Cogn. Neurodyn. 17(4), 1045–1059 (2023)

    Article  Google Scholar 

  19. Hu, Y., Li, Q., Ding, D., Jiang, L., Yang, Z., Zhang, H., Zhang, Z.: Multiple coexisting analysis of a fractional-order coupled memristive system and its application in image encryption. Chaos Solitons Fractals 152, 111334 (2021)

    Article  MathSciNet  Google Scholar 

  20. Sun, J., Yan, Y., Wang, Y., Fang, J.: Dynamical analysis of HR–FN neuron model coupled by locally active hyperbolic memristor and DNA sequence encryption application. Nonlinear Dyn. 111, 3811–3829 (2023)

    Article  Google Scholar 

  21. Zhang, X., Wu, F., Ma, J., Hobiny, A., Alzahrani, F., Ren, G.: Field coupling synchronization between chaotic circuits via a memristor. AEU Int. J. Electron. Commun. 115, 153050 (2020)

    Article  Google Scholar 

  22. Liu, Z., Wang, C., Jin, W., Ma, J.: Capacitor coupling induces synchronization between neural circuits. Nonlinear Dyn. 97, 2661–2673 (2019)

    Article  Google Scholar 

  23. Wang, C., Sun, G., Yang, F., Ma, J.: Capacitive coupling memristive systems for energy balance. AEU Int. J. Electron. Commun. 153, 154280 (2022)

    Article  Google Scholar 

  24. Wickramasinghe, M., Kiss, I.Z.: Synchronization of electrochemical oscillators with differential coupling. Phys. Rev. E 88(6), 062911 (2013)

    Article  Google Scholar 

  25. Yao, Z., Ma, J., Yao, Y., Wang, C.: Synchronization realization between two nonlinear circuits via an induction coil coupling. Nonlinear Dyn. 96, 205–217 (2019)

    Article  Google Scholar 

  26. Xie, Y., Zhou, P., Ma, J.: Energy balance and synchronization via inductive-coupling in functional neural circuits. Appl. Math. Model. 113, 175–187 (2023)

    Article  MathSciNet  Google Scholar 

  27. Chen, M., Luo, X., Suo, Y., Xu, Q., Wu, H.: Hidden extreme multistability and synchronicity of memristor-coupled non-autonomous memristive Fitzhugh-Nagumo models. Nonlinear Dyn. 111(8), 7773–7788 (2023)

    Article  Google Scholar 

  28. Chen, M., Luo, X., Zhang, Y., Wu, H., Xu, Q., Bao, B.: Initial-boosted behaviors and synchronization of memristor-coupled memristive systems. IEEE Trans. Circuits Syst. I Regul. Pap. 71(2), 781–793 (2024)

    Article  Google Scholar 

  29. Ma, M., Xie, X., Yang, Y., Li, Z., Sun, Y.: Synchronization coexistence in a Rulkov neural network based on locally active discrete memristor. Chin. Phys. B 32(5), 058701 (2023)

    Article  Google Scholar 

  30. Korneev, I.A., Semenov, V.V., Slepnev, A.V., Vadivasova, T.E.: The impact of memristive coupling initial states on travelling waves in an ensemble of the FitzHugh–Nagumo oscillators. Chaos Solitons Fractals 147, 110923 (2021)

    Article  MathSciNet  Google Scholar 

  31. Geng, F., Lin, X., Liu, X.: Chaotic traveling wave solutions in coupled Chua’s circuits. J. Dyn. Differ. Equ. 31, 1373–1396 (2019)

    Article  MathSciNet  Google Scholar 

  32. Muni, S.S., Provata, A.: Chimera states in ring–star network of chua circuits. Nonlinear Dyn. 101(4), 2509–2521 (2020)

    Article  Google Scholar 

  33. Calim, A., Torres, J.J., Ozer, M., Uzuntarla, M.: Chimera states in hybrid coupled neuron populations. Neural Netw. 126, 108–117 (2020)

    Article  Google Scholar 

  34. Chen, M., Wang, A., Wang, C., Wu, H., Bao, B.: DC-offset-induced hidden and asymmetric dynamics in Memristive Chua’s circuit. Chaos Solitons Fractals 160, 112192 (2022)

    Article  MathSciNet  Google Scholar 

  35. Njitacke, Z.T., Nkapkop, J.D.D., Signing, V.F., Tsafack, N., Sone, M.E., Awrejcewicz, J.: Novel extreme multistable Tabu learning neuron: circuit implementation and application to cryptography. IEEE Trans. Ind. Inf. 19(8), 8943–8952 (2023)

    Article  Google Scholar 

  36. Yao, W., Wang, C., Sun, Y., Gong, S., Lin, H.: Event-triggered control for robust exponential synchronization of inertial memristive neural networks under parameter disturbance. Neural Netw. 164, 67–80 (2023)

    Article  Google Scholar 

  37. Li, C., Wang, X., Du, J., Li, Z.: Electrical activity and synchronization of HR-tabu neuron network coupled by Chua Corsage Memristor. Nonlinear Dyn. 111, 21333–21350 (2023)

    Article  Google Scholar 

  38. Shi, J., Zeng, Z.: Global exponential stabilization and lag synchronization control of inertial neural networks with time delays. Neural Netw. 126, 11–20 (2020)

    Article  Google Scholar 

  39. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16(3), 285–317 (1985)

    Article  MathSciNet  Google Scholar 

  40. Lin, H., Wang, C., Cui, L., Sun, Y., Xu, C., Yu, F.: Brain-like initial-boosted hyperchaos and application in biomedical image encryption. IEEE Trans. Ind. Inform. 18(12), 8839–8850 (2022)

    Article  Google Scholar 

  41. Yang, Y., Huang, L., Kuznetsov, N., Lai, Q.: Design and implementation of grid-wing hidden chaotic attractors with only stable equilibria. IEEE Trans. Circuits Syst. I Regul. Pap. 70(12), 5408–5420 (2023)

    Article  Google Scholar 

  42. Sun, J., Zang, M., Liu, P., Wang, Y.: A secure communication scheme of three-variable chaotic coupling synchronization based on DNA chemical reaction networks. IEEE Trans. Signal Proces. 70, 2362–2373 (2022)

    Article  MathSciNet  Google Scholar 

  43. Liu, J., Zhang, J., Wang, Y.: Secure communication via chaotic synchronization based on reservoir computing. IEEE Trans. Neural Netw. Learn. Syst. 35(1), 285–299 (2024)

    Article  Google Scholar 

  44. Hua, Z., Zhou, Y.: Exponential chaotic model for generating robust chaos. IEEE Trans. Syst. Man Cybern. 51(6), 3713–3724 (2021)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grant Nos. 52277001, 62371073, and 12172066, the Qinglan Project of Jiangsu Province, and the Postgraduate Research and Practice Innovation Program of Jiangsu Province, China under Grant KYCX23_3186.

Author information

Authors and Affiliations

Authors

Contributions

W. Xue: Formal analysis, Experiment, Writing—original draft. Y. Zhang: Experiment, Writing—review & editing. Q. Xu: Validation, Software. H. Wu: Formal analysis, Writing—review & editing. M. Chen: Methodology, Project administration, Writing,—review & editing.

Corresponding author

Correspondence to Mo Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, W., Zhang, Y., Xu, Q. et al. Initial-condition-controlled synchronization behaviors in inductively coupled memristive Chua’s circuits. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09587-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09587-8

Keywords

Navigation