Skip to main content
Log in

Spatiotemporal dynamics of the network composed of the memristor Chua’s circuits under external excitation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A two-dimensional network composed of non-smooth memristor Chua's circuits is constructed to investigate the effect of external excitation on the evolution of spatiotemporal patterns. The spiral wave can be induced in the network with appropriate initial values and the system’s parameters, and it can be affected by memristor’s coefficient and coupling intensity of network, respectively. The external periodic excitation with appropriate amplitude and frequency is proposed. When the external periodic excitation imposed on different network nodes, the target waves, straight waves, and dimetric waves can be induced. The dynamic of spiral waves influenced by local external periodic excitation is explored by simulating the interaction between the spiral waves and three other types of waves generated by external periodic excitation. The spiral waves will be eliminated when the external periodic excitation is imposed on four network boundaries. In addition, the spatiotemporal patterns under noise perturbation are also studied. With the increase in noise intensity, the spiral waves will be more thoroughly eliminated. However, the dimetric waves are more stable than target waves and straight waves at the exact condition of noise intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Data availability

No dataset was generated or analyzed during this study.

References

  1. Budrene, E.O., Berg, H.C.: Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376, 49–53 (1995). https://doi.org/10.1038/376049a0

    Article  Google Scholar 

  2. Bär, M., Gottschanlk, N., Eiswirth, M., Erlt, G.: Spiral waves in a surface reaction: model calculations. J. Chem. Phys. 100(2), 1202–1214 (1994). https://doi.org/10.1063/1.466650

    Article  Google Scholar 

  3. Jahnke, W., Winfree, A.T.: A survey of spiral-wave behaviors in the Oregonator model. Int. J Bifurc. Chaos. 1(2), 445–466 (1991). https://doi.org/10.1142/S0218127491000348

    Article  MathSciNet  Google Scholar 

  4. Meron, E., Pelcé, P.: Model for spiral wave formation in excitable media. Phys. Rev. Lett. 60(18), 1880–1883 (1988). https://doi.org/10.1103/PhysRevLett.60.1880

    Article  MathSciNet  Google Scholar 

  5. McCullen, N., Wagenknecht, T.: Pattern formation on networks: from localized activity to turing patterns. Sci. Rep. 6, 27397 (2016). https://doi.org/10.1038/srep27397

    Article  Google Scholar 

  6. Zhang, X.F., Yao, Z., Guo, Y., Wang, C.N.: Target wave in the network coupled by thermistors. Chaos Soliton Fract. 142, 110455 (2021). https://doi.org/10.1016/j.chaos.2020.110455

    Article  MathSciNet  Google Scholar 

  7. Nettesheim, S., Oertzen, A., Rotermund, H.H., Ertl, G.: Reaction diffusion patterns in the catalytic CO-oxidation on Pt (110): front propagation and spiral waves. J. Chem. Phys. 98, 9977–9985 (1993). https://doi.org/10.1063/1.464323

    Article  Google Scholar 

  8. Frisch, T., Rica, S., Pierre, C., Gilli, J.M.: Spiral waves in liquid crystal. Phys. Rev. Lett. 72(10), 1471–1474 (1994). https://doi.org/10.1103/PhysRevLett.72.1471

    Article  Google Scholar 

  9. Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466 (1961). https://doi.org/10.1016/S0006-3495(61)86902-6

    Article  Google Scholar 

  10. Hodgkin, A.L., Huxley, A.F.: The components of membrane conductance in the giant axon of loligo. J. Physiol. 116(4), 473–496 (1952). https://doi.org/10.1113/jphysiol.1952.Sp004718

    Article  Google Scholar 

  11. Hindmarsh, J.L., Rose, R.M.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B 221(1222), 87–102 (1984). https://doi.org/10.1098/rspb.1984.0024

    Article  Google Scholar 

  12. Zheng, Q.Q., Shen, J.W., Zhang, R., Guan, L.N., Xu, Y.: Spatiotemporal patterns in a general networked Hindmarsh–Rose model. Front. Physiol. 13, 936982 (2022). https://doi.org/10.3389/fphys.2022.936982

    Article  Google Scholar 

  13. Lu, Y.M., Wang, C.H., Deng, Q.L.: Rulkov neural network coupled with discrete memristors. Netw.-Comput. Neural 33(3–4), 214–232 (2022). https://doi.org/10.1080/0954898X.2022.2131921

    Article  Google Scholar 

  14. Mond, A., Hens, C., Mondal, A., Antonopoulos, C.G.: Spatiotemporal instabilities and pattern formation in systems of diffusively coupled Izhikevich neurons. Chaos Soliton Fract. 152, 111375 (2021). https://doi.org/10.1016/j.chaos.2021.111375

    Article  MathSciNet  Google Scholar 

  15. Shi, X.R., Wang, Z.L., Zhuang, L.Z.: Spatiotemporal pattern in a neural network with non-smooth memristor. Electron. Res. Arch. 30(2), 715–731 (2022). https://doi.org/10.3934/era.2022038

    Article  MathSciNet  Google Scholar 

  16. Kang, Y.M., Chen, Y.Q., Fu, Y.X., Wang, Z.L., Chen, G.R.: Formation of spiral wave in Hodgkin–Huxley neuron networks with Gamma-distributed synaptic input. Commun. Nonlinear Sci. 83, 105112 (2020). https://doi.org/10.1016/j.cnsns.2019.105112

    Article  MathSciNet  Google Scholar 

  17. Wu, Y., Li, J.J., Liu, S.B., Pang, J.Z., Du, M.M., Lin, P.: Noise-induced spatiotemporal patterns in Hodgkin-Huxley neuronal network. Cogn. Neurodyn. 7, 431–440 (2013). https://doi.org/10.1007/s11571-013-9245-1

    Article  Google Scholar 

  18. Yu, D., Wu, Y., Ye, Z.Q., Xiao, F.L., Jia, Y.: Inverse chaotic resonance in Hodgkin–Huxley neuronal system. Eur. Phys. J Spec. Top. 231, 4097–4107 (2022). https://doi.org/10.1140/epjs/s11734-022-00629-z

    Article  Google Scholar 

  19. Yu, G., Ma, J., Jia, Y., Tang, J.: Dynamics of spiral wave in the coupled Hodgkin–Huxley neurons. Int. J. Mod. Phys. B 24(23), 4555–4562 (2010). https://doi.org/10.1142/S021797921005658X

    Article  Google Scholar 

  20. Yao, Y.G., Deng, H.Y., Ma, C.Z., Yi, M., Ma, J.: Impact of bounded noise and rewiring on the formation and instability of spiral waves in a small-world network of Hodgkin–Huxley neurons. PLoS ONE 12(1), e0171273 (2017). https://doi.org/10.1371/journal.pone.0171273

    Article  Google Scholar 

  21. Rajagopal, K., Jafari, S., Moroz, I., Karthikeyan, A., Srinivasan, A.: Noise induced suppression of spiral waves in a hybrid FitzHugh–Nagumo neuron with discontinuous resetting. Chaos 31, 073117 (2021). https://doi.org/10.1063/5.0059175

    Article  MathSciNet  Google Scholar 

  22. Karthikeyan, A., Srinivasan, A., Arun, S., Rajagopal, K.: Complex network dynamics of a memristor neuron model with piecewise linear activation function. Eur. Phys. J Spec. Top. 231, 4089–4096 (2022). https://doi.org/10.1140/epjs/s11734-022-00700-9

    Article  Google Scholar 

  23. Xu, Y., Ma, J.: Pattern formation in a thermosensitive neural network. Commun. Nonlinear Sci. 111, 106426 (2022). https://doi.org/10.1016/j.cnsns.2022.106426

    Article  MathSciNet  Google Scholar 

  24. Pivka, L.: Autowaves and spatio-temporal chaos in CNNs. I. A tutorial. IEEE Trans. Circuits-I. 42(10), 638–649 (1995). https://doi.org/10.1109/81.473570

    Article  Google Scholar 

  25. Perez-Muiiuzuri, A., Perez-Muiiuzuri, V., Pcrez-Villar, V., Chua, L.O.: Spiral waves on a 2-D array of nonlinear circuits. IEEE Trans. Circuits-I 40(11), 872–877 (1993). https://doi.org/10.1109/81.251828

    Article  Google Scholar 

  26. Zhang, G., Wu, F.Q., Hayat, T., Ma, J.: Selection of spatial pattern on resonant network of coupled memristor and Josephson junction. Commun. Nonlinear Sci. 65, 79–90 (2018). https://doi.org/10.1016/j.cnsns.2018.05.018

    Article  MathSciNet  Google Scholar 

  27. Chow, S.N., Jiang, M., Lin, X.B.: Traveling wave solutions in coupled Chua’s curcuits, part I: periodic solutions. J. Appl. Anal. Comput. 3(3), 213–237 (2013). https://doi.org/10.11948/2013016

    Article  MathSciNet  Google Scholar 

  28. Geng, F.J., Lin, X.B., Liu, X.B.: Chaotic traveling wave solutions in coupled Chua’s circuits. J. Dyn. Differ. Equ. 31, 1373–1396 (2019). https://doi.org/10.1007/s10884-017-9631-1

    Article  MathSciNet  Google Scholar 

  29. Hu, G., Xiao, J.H., Chua, L.O., Pivka, L.: Controlling spiral waves in a model of two-dimensional arrays of Chua’s circuits. Phys. Rev. Lett. 80(9), 1884–1887 (1998). https://doi.org/10.1103/PhysRevLett.80.1884

    Article  Google Scholar 

  30. Wang, C.N., Ma, J., Liu, Y., Huang, L.: Chaos control, spiral wave formation, and the emergence of spatiotemporal chaos in networked Chua circuits. Nonlinear Dyn. 67, 139–146 (2012). https://doi.org/10.1007/s11071-011-9965-x

    Article  Google Scholar 

  31. Pivka, L.: Autowaves and spatio-temporal chaos in CNNs part II. A tutorial. IEEE Trans. Circuits-I 42(10), 650–664 (1995). https://doi.org/10.1109/81.473571

    Article  Google Scholar 

  32. Winfree, A.T.: Electrical turbulence in three-dimensional heart muscle. Science 266(5187), 1003–1006 (1994). https://doi.org/10.1126/science.7973648

    Article  Google Scholar 

  33. Davidenko, J.M., Perstov, A.V., Salomonsz, R., Baxter, W., Jalife, J.: Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 355, 349–351 (1992). https://doi.org/10.1038/355349a0

    Article  Google Scholar 

  34. Jalife, J., Gray, R.A., Morley, G.E., Davidenko, J.M.: Self-organization and the dynamical nature of ventricular fibrillation. Chaos 8, 79–93 (1998). https://doi.org/10.1063/1.166289

    Article  Google Scholar 

  35. Ding, Q.M., Wu, Y., Hu, Y.P., Liu, C.Y., Hu, X.Y., Jia, Y.: Tracing the elimination of Reentry spiral waves in defibrillation: temperature effects. Chaos Soliton Fract. 174, 113760 (2023). https://doi.org/10.1016/j.chaos.2023.113760

    Article  MathSciNet  Google Scholar 

  36. Xia, Y.X., Zhi, X.P., Li, T.C., Pan, J.T., Panfilov, A.V., Zhang, H.: Spiral wave drift under optical feedback in cardiac tissue. Phys. Rev. E 106, 024405 (2022). https://doi.org/10.1103/PhysRevE.106.024405

    Article  MathSciNet  Google Scholar 

  37. Zhang, J., Tang, J., Ma, J., Luo, J.M., Yang, X.Q.: The dynamics of spiral tip adjacent to inhomogeneity in cardiac tissue. Physica A 491, 340–346 (2018). https://doi.org/10.1016/j.physa.2017.09.051

    Article  MathSciNet  Google Scholar 

  38. Panfilov, A.V.: Spiral breakup as a model of ventricular fibration. Chaos 8, 57–64 (1998). https://doi.org/10.1063/1.166287

    Article  Google Scholar 

  39. Luo, C.H., Rudy, Y.: A model of the ventricular cardiac action potential, depolarization, repolarization, and their interaction. Circ. Res. 68, 1501–1526 (1991). https://doi.org/10.1161/01.RES.68.6.1501

    Article  Google Scholar 

  40. Kilic, R., Dalkiran, F.Y.: Reconfigurable implementations of Chua’s circuit. Int. J. Bifurc. Chaos 19(4), 1339–1350 (2009). https://doi.org/10.1142/S0218127409023664

    Article  Google Scholar 

  41. Xu, Y., Ying, H., Jia, Y., Ma, J., Hayat, T.: Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci. Rep. 7, 43452 (2017). https://doi.org/10.1038/srep43452

    Article  Google Scholar 

  42. Hua, M.J., Bao, H., Wu, H.G., Xu, Q., Bao, B.C.: A single neuron model with memristive synaptic weight. Chin. J. Phys. 76, 217–227 (2022). https://doi.org/10.1016/j.cjph.2021.10.042

    Article  MathSciNet  Google Scholar 

  43. Ma, X.J., Mou, J., Xiong, L., Banerjee, S., Cao, Y.H., Wang, J.Y.: A novel chaotic circuit with coexistence of multiple attractors and state transition based on two memristors. Chaos Soliton Fract. 152(5), 111363 (2021). https://doi.org/10.1016/j.chaos.2021.111363

    Article  MathSciNet  Google Scholar 

  44. Zhao, J.Y., Wang, Q.Y.: The dynamical role of electromagnetic induction in epileptic seizures: a double-edged sword. Nonlinear Dyn. 106, 975–988 (2021). https://doi.org/10.1007/s11071-021-06855-9

    Article  Google Scholar 

  45. Zhao, M.F., Li, H.L., Zhang, L., Hu, C., Jiang, H.J.: Quasi-synchronization of discrete-time fractional-order quaternion-valued memristive neural networks with time delays and uncertain parameters. Appl. Math. Comput. 453, 128095 (2023). https://doi.org/10.1016/j.amc.2023.128095

    Article  MathSciNet  Google Scholar 

  46. Chua, L.O., Komuro, M., Matsumoto, T.: The double scroll family. IEEE Trans. Circuits Syst. 33(11), 1072–1118 (1986). https://doi.org/10.1109/TCS.1986.1085869

    Article  Google Scholar 

  47. Chua, L.O.: Chua’s circuit: an overview ten years later. J Circuit Syst. Comp. 04(02), 117–159 (1994). https://doi.org/10.1142/S0218126694000090

    Article  Google Scholar 

  48. Bao, H., Bao, B.C., Lin, Y., Wang, J., Wu, H.G.: Hidden attractor and its dynamical characteristic in memristive self-oscillating system. Acta Phys. Sin. 65(18), 180501 (2016). https://doi.org/10.7498/aps.65.180501

    Article  Google Scholar 

  49. Qin, H.X., Ma, J., Ren, G.D., Zhou, P.: Field coupling-induced wave propagation and pattern stability in a two-layer neuronal network under noise. Int. J. Mod. Phys. B 32, 1850298 (2018). https://doi.org/10.1142/S0217979218502983

    Article  Google Scholar 

  50. Xu, Y., Wang, C.N., Jin, W.Y., Ma, J.: Investigation of emergence of target wave and spiral wave in neuronal network induced by gradient coupling. Acta. Phys. Sin. 64(19), 198701 (2015). https://doi.org/10.7498/aps.64.198701

    Article  Google Scholar 

  51. Wang, Z., Rostami, Z., Jafari, S., Alsaadi, F.E., Slavinec, M.: Suppression of spiral wave turbulence by means of periodic plane waves in two-layer excitable media. Chaos Soliton Fract. 128, 229–233 (2019). https://doi.org/10.1016/j.chaos.2019.07.045

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors express sincerely appreciation to the anonymous reviewers for their efforts in reviewing the manuscript. This work is supported by National Natural Science Foundation of China (Grant Nos. 11872327 and 51777180) and Natural Science Research Project of Jiangsu Colleges and Universities (20KJA190001).

Funding

The funding was provided by National Natural Science Foundation of China (Grant Nos. 11872327 and 51777180) and Natural Science Research Project of Jiangsu Colleges and Universities (20KJA190001)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuolei Wang.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, L., Shi, X. & Wang, Z. Spatiotemporal dynamics of the network composed of the memristor Chua’s circuits under external excitation. Nonlinear Dyn 112, 10433–10449 (2024). https://doi.org/10.1007/s11071-024-09601-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-024-09601-z

Keywords

Navigation