Skip to main content

Advertisement

Log in

Assessment of human thermal perception in the hot-humid climate of Dar es Salaam, Tanzania

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Dar es Salaam, Tanzania, is a typical African city along the Indian Ocean coast, and therefore an important urban area to examine human thermal perception in the hot-humid tropical climate. Earlier research on human bioclimate at Dar es Salaam indicated that heat stress prevails during the hot season from October to March, peaking between December and February, particularly the early afternoons. In order to assess the human thermal perception and adaptation, two popular places, one at an urban park and another at a beach environment, were selected and questionnaire surveys were conducted in August–September 2013 and January 2014, concurrently with local micro-meteorological measurements at survey locations. The thermal conditions were quantified in terms of the thermal index of the physiologically equivalent temperature (PET) using the micro-scale climate model RayMan. The thermal comfort range of human thermal comfort and the local thermal adaptive capacity were determined in respect to the thermal index by binning thermal sensation votes. The thermal comfort range was found to be well above that in temperate climates at about 23–31 °C of PET. The study could significantly contribute to urban planning in Dar es Salaam and other coastal cities in the tropics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • African Development Bank (2014) Tracking Africa’s progress in figures. http://nafdb-org.jp/file/news-and-pressrelease/Tracking_Africafs_Progress_in_Figures-3.pdf. Accessed 22-Jul-14

  • Alfayo R, Uiso CB (2002) Global solar radiation distribution and available solar energy potential in Tanzania. Phys Scr 2002(T97):91

    Google Scholar 

  • Ali-Toudert F, Djenane M, Bensalem R, Mayer H (2005) Outdoor thermal comfort in the old desert city of Beni-Isguen, Algeria. Clim Res 28(3):243–256

    Article  Google Scholar 

  • Bargman DJ (1970) The climate of Dares Salaam. In: Sutton JEG (ed) Dar es Salaam, City, port and region, vol 71. Tanzania Notes and Records, Dar es Salaam, pp. 55–64

    Google Scholar 

  • Brager GS, de Dear RJ (1998) Thermal adaptation in the built environment: a literature review. Energy and Build 27(1):83–96. doi:10.1016/S0378-7788(97)00053-4

    Article  Google Scholar 

  • Castán Broto V, Oballa B, Junior P (2013) Governing climate change for a just city: challenges and lessons from Maputo, Mozambique. Local Environ 18(6):678–704. doi:10.1080/13549839.2013.801573

    Article  Google Scholar 

  • Cheng V, Ng E, Chan C, Givoni B (2012) Outdoor thermal comfort study in a sub-tropical climate: a longitudinal study based in Hong Kong. Int J Biometeorol 56(1):43–56. doi:10.1007/s00484-010-0396-z

    Article  Google Scholar 

  • Cohen P, Potchter O, Matzarakis A (2012) Daily and seasonal climatic conditions of green urban open spaces in the Mediterranean climate and their impact on human comfort. Build Environ 51:285–295. doi:10.1016/j.buildenv.2011.11.020

    Article  Google Scholar 

  • Cohen P, Potchter O, Matzarakis A (2013) Human thermal perception of coastal Mediterranean outdoor urban environments. Appl Geogr 37:1–10. doi:10.1016/j.apgeog.2012.11.001

    Article  Google Scholar 

  • de Dear RJ, Brager GS (2002) Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55. Energy Build 34(6):549–561

    Article  Google Scholar 

  • de Freitas CR (1985) Assessment of human bioclimate based on thermal response. Int J Biometeorol 29(2):97–119

    Article  Google Scholar 

  • de Freitas CR (1990) Recreation climate assessment. Int J Climatol 10(1):89–103. doi:10.1002/joc.3370100110

    Article  Google Scholar 

  • de Oliveira AP, Machado AJ, Escobedo JF, Soares J (2002) Diurnal evolution of solar radiation at the surface in the city of São Paulo: seasonal variation and modeling. Theor Appl Climatol 71(3–4):231–249

    Article  Google Scholar 

  • Diabate L, Blanc P, Wald L (2004) Solar radiation climate in Africa. Sol Energy 76(6):733–744

    Article  Google Scholar 

  • Dutt AJ (1991) Wind flow in an urban environment. Environ Monit Assess 19(1–3):495–506. doi:10.1007/BF00401336

    Article  CAS  Google Scholar 

  • Eliasson I (2000) The use of climate knowledge in urban planning. Landsc Urban Plan 48(1):31–44

    Article  Google Scholar 

  • Emmanuel R (2005) Thermal comfort implications of urbanization in a warm-humid city: the Colombo Metropolitan Region (CMR), Sri Lanka. Build Environ 40:1591–1601

    Article  Google Scholar 

  • Emmanuel R, Johansson E (2006) Influence of urban morphology and sea breeze on hot humid microclimate: the case of Colombo, Sri Lanka. Clim Res 30(3):189–200

    Article  Google Scholar 

  • Emmanuel R, Rosenlund H, Johansson E (2007) Urban shading—a design option for the tropics? A study in Colombo, Sri Lanka. Int J Climatol 27(14):1995–2004. doi:10.1002/joc.1609

    Article  Google Scholar 

  • Fanger PO (1970) Thermal comfort. Analysis and applications in environmental engineering. Danish Technical Press, Copenhagen

    Google Scholar 

  • Fanger PO (1973) Assessment of man’s thermal comfort in practice. Br J Ind Med 30(4):313–324. doi:10.1136/oem.30.4.313

    CAS  Google Scholar 

  • Farajzadeh H, Matzarakis A (2012) Evaluation of thermal comfort conditions in Ourmieh Lake, Iran. Theor Appl Climatol 107(3–4):451–459. doi:10.1007/s00704-011-0492-y

    Article  Google Scholar 

  • Grimmond CS, Roth M, Oke TR, Au YC, Best M, Betts R, Carmichael G, Cleugh H, Dabberdt W, Emmanuel R (2010) Climate and more sustainable cities: climate information for improved planning and management of cities (producers/capabilities perspective). Procedia Environ Sci 1:247–274

    Article  Google Scholar 

  • Höppe P (1992) A new procedure to determine the mean radiant temperature outdoors. Wetter Leben 44:147–151

    Google Scholar 

  • Höppe P (1999) The physiological equivalent temperature–a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43(2):71–75. doi:10.1007/s004840050118

    Article  Google Scholar 

  • Höppe P (2002) Different aspects of assessing indoor and outdoor thermal comfort. Spec Issue Therm Comfort Stand 34(6):661–665. doi:10.1016/S0378-7788(02)00017-8

    Google Scholar 

  • Hwang R, Lin T (2007) Thermal comfort requirements for occupants of semi-outdoor and outdoor environments in hot-humid regions. Archit Sci Rev 50(4):357–364

    Article  Google Scholar 

  • Hwang R, Cheng M, Lin T, Ho M (2009) Thermal perceptions, general adaptation methods and occupant’s idea about the trade-off between thermal comfort and energy saving in hot–humid regions. Build Environ 44(6):1128–1134. doi:10.1016/j.buildenv.2008.08.001

    Article  Google Scholar 

  • Iqbal M (1983) An introduction to solar radiation. Academic Press, Ontario

    Google Scholar 

  • Ishii A, Iwamoto S, Yamashita M, Katayama T, Shiotsuki Y (1993) An experimental study on the effect of humidity on thermal sensations of people in summer. J Therm Biol 18(5):387–391

    Article  Google Scholar 

  • ISO (1998) Ergonomics of the thermal environment instruments for measuring physical quantities (ISO 7726: 1998)

    Google Scholar 

  • Jendritzky G, de Dear R (2009) Adaptation and thermal environment. In: Biometeorology for adaptation to climate variability and change. Springer, pp 9–32

  • Jendritzky G, de Dear R, Havenith G (2012) UTCI-why another thermal index? Int J Biometeorol 56(3):421–428. doi:10.1007/s00484-011-0513-7

    Article  Google Scholar 

  • Johansson E, Emmanuel R (2006) The influence of urban design on outdoor thermal comfort in the hot, humid city of Colombo, Sri Lanka. Int J Biometeorol 51(2):119–133. doi:10.1007/s00484-006-0047-6

    Article  Google Scholar 

  • Kántor N, Kovács A, Lin T (2014) Looking for simple correction functions between the mean radiant temperature from the “standard black globe” and the “six-directional” techniques in Taiwan. Theor Appl Climatol 121:1–13

    Google Scholar 

  • Kithiia J (2011) Climate change risk responses in east African cities: need, barriers and opportunities. Curr Opin Environ Sustain 3(3):176–180. doi:10.1016/j.cosust.2010.12.002

    Article  Google Scholar 

  • Kuttler W (2004) Stadtklima. UWSF–Z Umweltchem Ökotox 16(4):263–274. doi:10.1065/uwsf2004.08.083

    Article  CAS  Google Scholar 

  • Lin T (2009) Thermal perception, adaptation and attendance in a public square in hot and humid regions. Build Environ 44(10):2017–2026. doi:10.1016/j.buildenv.2009.02.004

    Article  Google Scholar 

  • Lin T, Matzarakis A (2008) Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int J Biometeorol 52(4):281–290. doi:10.1007/s00484-007-0122-7

    Article  Google Scholar 

  • Lin T, Matzarakis A, Hwang R (2010) Shading effect on long-term outdoor thermal comfort. Build Environ 45(1):213–221. doi:10.1016/j.buildenv.2009.06.002

    Article  Google Scholar 

  • Lin T, de Dear R, Hwang R (2011) Effect of thermal adaptation on seasonal outdoor thermal comfort. Int J Climatol 31(2):302–312

    Article  Google Scholar 

  • Makaremi N, Salleh E, Jaafar MZ, Ghaffarian HA (2012) Thermal comfort conditions of shaded outdoor spaces in hot and humid climate of Malaysia. Build Environ 48:7–14

    Article  Google Scholar 

  • Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43(2):76–84

    Article  CAS  Google Scholar 

  • Matzarakis A, Rutz F, Mayer H (2007) Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51(4):323–334. doi:10.1007/s00484-006-0061-8

    Article  Google Scholar 

  • Matzarakis A, Rocco M, Najjar D (2009) Thermal bioclimate in Strasbourg–the 2003 heat wave. Theor Appl Climatol 98(3-4):209–220

    Article  Google Scholar 

  • Matzarakis A, Rutz F, Mayer H (2010) Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54(2):131–139. doi:10.1007/s00484-009-0261-0

    Article  Google Scholar 

  • Mayer H, Höppe P (1987) Thermal comfort of man in different urban environments. Theor Appl Climatol 38:43–49

    Article  Google Scholar 

  • Mayer H, Holst J, Dostal P, Imbery F, Schindler D (2008) Human thermal comfort in summer within an urban street canyon in Central Europe. Meteorol Z 17(3):241–250. doi:10.1127/0941-2948/2008/0285

    Article  Google Scholar 

  • McCarthy MP, Best MJ, Betts RA (2010) Climate change in cities due to global warming and urban effects. Geophys Res Lett 37(9)

  • National Bureau of Statistics (2011) Tanzania in Figures 2010. http://www.nbs.go.tz/pdf/Tanzania_in_Figures2010.pdf. Accessed 30 Dec 2011

  • Ndetto EL, Matzarakis A (2013a) Basic analysis of climate and urban bioclimate of Dar es Salaam, Tanzania. Theor Appl Climatol 114(1–2):213–226. doi:10.1007/s00704-012-0828-2

    Article  Google Scholar 

  • Ndetto EL, Matzarakis A (2013b) Effects of urban configuration on human thermal conditions in a typical tropical African coastal city. Adv Meteorol 2013:1–12

    Article  Google Scholar 

  • Nieuwolt S (1973) Breezes along the Tanzanian east coast. Archiv Meteorol Geophys Bioklimatol Ser B 21:189–206

    Article  Google Scholar 

  • Nikolopoulou M, Steemers K (2003) Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy Build 35(1):95–101

    Article  Google Scholar 

  • Nikolopoulou M, Baker N, Steemers K (2001) Thermal comfort in outdoor urban spaces: understanding the human parameter. Urban Environ 70(3):227–235. doi:10.1016/S0038-092X(00)00093-1

    Google Scholar 

  • Okogbue EC, Adedokun JA (2002) Characterization of sky conditions over Ile-Ife, Nigeria, based on 19921998 solar radiation observations. Meteorol Z 11(6):419–423

    Article  Google Scholar 

  • Oliveira S, Andrade H (2007) An initial assessment of the bioclimatic comfort in an outdoor public space in Lisbon. Int J Biometeorol 52(1):69–84. doi:10.1007/s00484-007-0100-0

    Article  Google Scholar 

  • Omonijo AG, Matzarakis A (2011) Climate and bioclimate analysis of Ondo State, Nigeria. Meteorol Z 20(5):531–539

    Article  Google Scholar 

  • Sherwood SC, Huber M (2010) An adaptability limit to climate change due to heat stress. Proc Natl Acad Sci 107(21):9552–9555. doi:10.1073/pnas.0913352107

    Article  CAS  Google Scholar 

  • Simon D (2010) The challenges of global environmental change for urban Africa. Urban Forum 21(3):235–248

    Article  Google Scholar 

  • Spagnolo J, de Dear R (2003) A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Build Environ 38(5):721–738. doi:10.1016/S0360-1323(02)00209-3

    Article  Google Scholar 

  • Streiling S, Matzarakis A (2003) Influence of single and small clusters of trees on the bioclimate of a city: a case study. J Arboric 29(6):309–316

    Google Scholar 

  • Tan CL, Wong NH, Jusuf SK (2013) Outdoor mean radiant temperature estimation in the tropical urban environment. Build Environ 64:118–129. doi:10.1016/j.buildenv.2013.03.012

    Article  Google Scholar 

  • Tan CL, Wong NH, Jusuf SK (2014) Effects of vertical greenery on mean radiant temperature in the tropical urban environment. Landsc Urban Plan 127:52–64

    Article  Google Scholar 

  • Thorsson S, Lindberg F, Eliasson I, Holmer B (2007) Different methods for estimating the mean radiant temperature in an outdoor urban setting. Int J Climatol 27(14):1983–1993. doi:10.1002/joc.1537

    Article  Google Scholar 

  • Tredre BE (1965) Assessment of mean radiant temperature in indoor environments. Br J Ind Med 22(1):58–66

    CAS  Google Scholar 

  • Tung C, Chen C, Tsai K, Kántor N, Hwang R, Matzarakis A, Lin T (2014) Outdoor thermal comfort characteristics in the hot and humid region from a gender perspective. Int J Biometeorol. doi:10.1007/s00484-014-0795-7

    Google Scholar 

Download references

Acknowledgments

The fieldwork survey was facilitated by the financial assistance from DAAD and the Müller-Fahnenberg-Stiftung. The willingness of the people to participate in the interview is highly appreciated. During fieldwork, Mr. Jeremiah F. Masue and Bernard L. Andrea assisted in conducting the interviews and watching over the instruments. Advice to improve the map illustration was kindly given by Ms. Martinelli. Mr. D. Redepenning improvised the screen shield for instruments while Mr. D. Flöhlich assisted in testing the instruments at the urban climate station in Freiburg. Finally, we thank the anonymous reviewers for their constructive suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel L. Ndetto.

Electronic supplementary material

ESM 1

(PDF 183 kb)

ESM 2

(PDF 170 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ndetto, E.L., Matzarakis, A. Assessment of human thermal perception in the hot-humid climate of Dar es Salaam, Tanzania. Int J Biometeorol 61, 69–85 (2017). https://doi.org/10.1007/s00484-016-1192-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-016-1192-1

Keywords

Navigation