Skip to main content
Log in

Modelling radiation fluxes in simple and complex environments: basics of the RayMan model

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Short- and long-wave radiation flux densities absorbed by people have a significant influence on their energy balance. The heat effect of the absorbed radiation flux densities is parameterised by the mean radiant temperature. This paper presents the physical basis of the RayMan model, which simulates the short- and long-wave radiation flux densities from the three-dimensional surroundings in simple and complex environments. RayMan has the character of a freely available radiation and human-bioclimate model. The aim of the RayMan model is to calculate radiation flux densities, sunshine duration, shadow spaces and thermo-physiologically relevant assessment indices using only a limited number of meteorological and other input data. A comparison between measured and simulated values for global radiation and mean radiant temperature shows that the simulated data closely resemble measured data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Badescu V (1997) Verification of some very simple clear and cloudy sky model to evaluate global solar irradiance. Sol Energy 61:251–264

    Article  Google Scholar 

  • Brühl Ch, Zdunkowski W (1983) An approximate calculation method for parallel and diffuse solar irradiances on inclined surfaces in the presence of obstructing mountain or buildings. Arch Meteorol Geophys Bioclimatol B 32:111–129

    Article  Google Scholar 

  • Bruse M, Fleer H (1998) Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model. Environ Model Softw 13:373–384

    Article  Google Scholar 

  • Ceballos JC, Moura GB de A (1997) Solar irradiation assessment using meteosat 4-Vis imagery. Solar Energy 60:209–219

    Article  Google Scholar 

  • Clark RP, Edholm OG (1985) Man and his thermal environment. Arnold, London

    Google Scholar 

  • Craggs C, Conway EM, Pearsall NM (2000) Statistical investigation of the optimal averaging time for solar irradiance on horizontal and vertical surfaces in the UK. Sol Energy 68:79–187

    Article  Google Scholar 

  • Czeplak G, Kasten F (1987) Parametrisierung der atmosphärischen Wärmestrahlung bei bewölktem Himmel. Meteorol Rdsch 40:184–187

    Google Scholar 

  • Diak GR, Bland WL, Mecikalski JR, Anderson MC (2000) Satellite-based estimates of longwave radiation for agricultural applications. Agric For Meteorol 103:349–355

    Article  Google Scholar 

  • Falkenberg G, Bolz HM (1949) Neue Bestimmung der Konstanten der Angströmschen Strahlungsformel. Z Meteorol 3:97

    Google Scholar 

  • Fanger PO (1972) Thermal comfort. McGraw-Hill, New York

    Google Scholar 

  • Frank SF, Gerding RB, O’Rourke PA, Terhung WH (1981) An urban radiation obstruction model. Bound-Lay Meteorol 20:259–264

    Article  Google Scholar 

  • Gagge AP, Fobelets AP, Berglund LG (1986) A standard predictiveindex of human response to the thermal environment. ASHRAETrans 92:709–731

    Google Scholar 

  • Gopinathan KK (1992) Estimation of hourly global radiation and diffuse solar radiation from hourly sunshine duration. Sol Energy 48:3–5

    Article  Google Scholar 

  • Gueymard C (2000) Prediction and performance assessment of mean hourly global radiation. Sol Energy 68:285–303

    Article  Google Scholar 

  • Gul MS, Muneer T, Kambezidis HD (1998) Models for obtaining solar radiation from other meteorological data. Sol Energy 64:99–108

    Article  Google Scholar 

  • Höppe P (1993) Heat balance modelling. Experientia 49:741–746

    Article  PubMed  Google Scholar 

  • Höppe P (1999) The physiological equivalent temperature—a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75

    Article  PubMed  Google Scholar 

  • ISO (1983) ISO 7730: Moderate thermal environments—Determination of the PMV and PPD indices and specification of the conditions of thermal comfort. International Organization for Standardization, Geneva

    Google Scholar 

  • Iziomon MG, Mayer H (2001) Performance of solar radiation models—a case study. Agric For Meteorol 110:1–11

    Article  Google Scholar 

  • Iziomon MG, Mayer H, Matzarakis A (2003) Downward atmospheric longwave irradiance under clear and cloudy skies: Measurement and parameterization. J Atmos Sol-Terr Phys 65:1107–1116

    Article  Google Scholar 

  • Jendritzky G, Nübler W (1981) A model analysing the urban thermal environment in physiologically significant terms. Arch Meteorol Geophys Bioclimatol B 29:313–326

    Article  Google Scholar 

  • Jendritzky G, Menz H, Schirmer H, Schmidt-Kessen W (1990) Methodik zur raumbezogenen Bewertung der thermischen Komponente im Bioklima des Menschen (Fortgeschriebenes Klima-Michel-Modell). Beitr Akad Raumforsch Landesplan, No. 114

  • Jessel W (1983) Die diffuse Himmelstrahlung. Eine vergleichende Darstellung der Bestrahlungsstärke bezogen auf eine kugelförmige und eine ebene horizontale Empfangsfläche. Arch Meteorol Geophys Bioclimatol B 32:23–52

    Article  Google Scholar 

  • Johansson E, Emmanuel R (2006) The influence of urban design on outdoor thermal comfort in the hot, humid city of Colombo, Sri Lanka. Int J Biometeorol 51:119–133

    Article  PubMed  Google Scholar 

  • Kaempfert W (1949) Zur Frage der Besonnung enger Strassen. Meteorol Rdsch 2:222–227

    Google Scholar 

  • Kaempfert W (1951) Ein Phasendiagramm der Besonnung. Meteorol Rdsch 4:141–144

    Google Scholar 

  • Kanda M, Kawai T, Nagakawa K (2005) A simple theoretical radiation scheme for regular building arrays. Bound-Lay Meteorol 114:71–90

    Article  Google Scholar 

  • Kasten F (1980) A simple parametrization of the pyrheliometric formula for determining the Linke turbidity factor. Meteorol Rdsch 33:124–127

    Google Scholar 

  • Kasten F, Young AT (1989) Revised optical air mass tables and approximation formula. Appl Optics 28:4735–4738

    Article  Google Scholar 

  • Kemmoku Y, Orita S, Nakagawa S, Sakakibara T (1999) Daily insolation forecasting using a multi-stage neural network. Sol Energy 66:193–199

    Article  Google Scholar 

  • Kerslake D McK (1972) The stress of hot environments. Cambridge University Press, Cambridge

    Google Scholar 

  • Littlefair P (2001) Daylight, sunlight and solar gain in the urban environment. Sol Energy 70:177–185

    Article  Google Scholar 

  • Marki A, Antonic O (1999) Annual models of monthly mean hourly direct, diffuse, and global radiation at ground. Meteorol Z NF 8:91–95

    Google Scholar 

  • Matzarakis A, Mayer H (2008) Importance of urban meteorological stations—the example of Freiburg, Germany. In: Mayer H (ed) Celebrating the 50Years of the Meteorological Institute, Albert-Ludwigs-University ofFreiburg, Germany. Ber Meteorol Inst Univ Freiburg Nr. 17, pp 101–110

  • Matzarakis A, Rutz F, Mayer H (2007) Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51:323–334

    Article  PubMed  Google Scholar 

  • Mayer H (1993) Urban bioclimatology. Experientia 49:957–963

    Article  CAS  PubMed  Google Scholar 

  • Mayer H, Holst J, Dostal P, Imbery F, Schindler D (2008) Human thermal comfort in summer within an urban street canyon in Central Europe. Meteorol Z 17:241–250

    Article  Google Scholar 

  • Meek DW (1997) Estimation of maximum possible daily global radiation. Agric For Meteorol 87:223–241

    Article  Google Scholar 

  • Mohsen MA (1979) Solar radiation and courtyard house forms—I. A mathematical model. Build Environ 14:89–106

    Article  Google Scholar 

  • Mora-Lopez LL, Sidrach-de-Cardona M (1998) Multicaptive arma models to generate hourly series of global irradiation. Sol Energy 63:283–291

    Article  Google Scholar 

  • Monteith JL, Unsworth M (1990) Principles of environmental physics, 2nd edn. Elsevier, Oxford

  • Nunez M, Eliasson I, Lindgren J (2000) Spatial variation of incoming longwave radiation in Göteborg, Sweden. Theor Appl Climatol 67:181–192

    Article  Google Scholar 

  • Oke TR (1987) Boundary layer climates. Methuen, London

    Google Scholar 

  • Olseth JA, Skartveit A (1993) Characteristics of hourly global irradiance modelled from cloud data. Sol Energy 51:197–204

    Article  Google Scholar 

  • Power H (2001) Estimating atmospheric turbidity from climate data. Atmos Environ 35:125–134

    Article  CAS  Google Scholar 

  • Prata AJ (1996) A new long-wave formula for estimating downward clear-sky radiation at the surface. Q J R Meteorol Soc 122:1127–1151

    Article  Google Scholar 

  • Revfeim KJA (1997) On the relationship between radiation and mean daily sunshine. Agric For Meteorol 86:183–191

    Article  Google Scholar 

  • Roderick ML (1999) Estimating the diffuse component from daily and monthly measurements of global radiation. Agric For Meteorol 95:169–185

    Article  Google Scholar 

  • Salsibury JW, D’Aria DM (1992) Emissivity of terrestrial material in the 8–14 μm atmospheric window. Remote Sens Environ 42:83–106

    Article  Google Scholar 

  • Santamouris M, Mihalakakou G, Psiloglou B, Eftaxias G, Asimakopoulos DN (1999) Modeling the global irradiation on the earth´s surface using atmospheric deterministic and intelligent data-driven techniques. J Climate 12:3105–3116

    Article  Google Scholar 

  • Sen Z (1998) Fuzzy algorithm for estimation of solar radiation from sunshine duration. Sol Energy 63:39–49

    Article  Google Scholar 

  • Teller J, Azar S (2001) Townscope II—a computer system to support solar access decision-making. Sol Energy 70:187–200

    Article  Google Scholar 

  • Terjung WH, Louie S (1974) A climatic model of urban energy budgets. Geogr Anal 6:341–367

    Google Scholar 

  • Thorsson S, Lindqvist M, Lindqvist S (2004) Thermal bioclimatic conditions and patterns of behaviour in an urban park in Göteborg, Sweden. Int J Biometeorol 48:149–156

    Article  PubMed  Google Scholar 

  • Thorsson S, Lindberg F, Eliasson I, Holmer B (2007) Different methods for estimating the mean radiant temperature in an outdoor urban setting. Int J Climatol 27:1983–1993

    Article  Google Scholar 

  • Valko P (1966) Die Himmelsstrahlung in ihrer Beziehung zu verschiedenen Parametern. Arch Meteorol Geophys Bioclimatol B14:337–359

    Google Scholar 

  • VDI (1994) VDI 3789, Part 2: Environmental meteorology. Interactions between atmosphere and surfaces; calculation of the short- and long wave radiation. Beuth, Berlin

    Google Scholar 

  • VDI (1998) VDI 3787, Part I: Environmental Meteorology, Methods for the human biometeorological evaluation of climate and air quality for the urban and regional planning at regional level. Part I: Climate. Beuth, Berlin

  • VDI (2001) VDI 3789, Part 3: Environmental Meteorology, interactions between atmosphere and surfaces; calculation of spectral irradiances in the solar wavelength range. Beuth, Berlin

    Google Scholar 

  • Winslow CEA, Herrington LP, Gagge AP (1936) A new method of particional calorimetry. Am J Physiol 116:641–655

    CAS  Google Scholar 

  • Zdunkowski W, Brühl Ch (1983) A fast approximate method for the calculation of the infrared radiation balance within city street cavities. Arch Meteorol Geophys Bioclimatol B 33:237–241

    Article  Google Scholar 

Download references

Acknowledgements

Thanks a million to RayMan users for their suggestions and validations. Both represent the basis for further development of the model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Matzarakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matzarakis, A., Rutz, F. & Mayer, H. Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54, 131–139 (2010). https://doi.org/10.1007/s00484-009-0261-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-009-0261-0

Keywords

Navigation